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ABSTRACT WiFi fingerprinting has been a prominent solution for indoor positioning, yet its dependence
on labour-intensive data collection and susceptibility to environmental dynamics are on-going major
challenges. Thus, this paper presents a comprehensive survey and analysis of the data augmentation
techniques designed to enhance WiFi fingerprinting datasets, focusing on the efficiency in data construction
and the robustness in positioning accuracy. We reviewed over 70 studies, and proposed a novel taxonomy
that categorises existing methods into 6 groups: traditional (e.g., interpolation, perturbation), propagation
models, machine learning, deep learning, hybrid approaches, and other emerging techniques. Our quan-
titative analysis correlates key metrics, such as input data size, synthetic data volume, and augmentation
ratios, with positioning performance. We found that traditional methods achieved notable performance
enhancements with minimal computational overhead. Surprisingly, deep learning models became less
efficient when generating more data, particularly when the synthetic data exceeded an threefold ratio over
the input samples. Our findings provide actionable guidance for selecting data augmentation strategies and
bridge the gap between theoretical advancements and practical deployment for WiFi fingerprinting dataset
enhancement.

INDEX TERMS Indoor positioning, WiFi fingerprinting, data augmentation, generative models.

I. INTRODUCTION

WHILE Global Positioning System (GPS) performs
reliably in outdoor environments, its accuracy signif-

icantly degrades indoors due to signal attenuation and mul-
tipath effects. This limitation has motivated the exploration
of alternative indoor positioning techniques. Amongst these,
WiFi fingerprinting has emerged as one of the most popular
techniques for indoor positioning systems leveraging existing
infrastructure and enabling cost-effective deployment com-
pared to dedicated hardware solutions like Ultrawide band
(UWB), and Bluetooth Low Energy (BLE) [1]–[4].

WiFi fingerprinting involves constructing a dataset through
systematic site surveys, during which the WiFi signal mea-
surements such as Received Signal Strength (RSS), Chan-
nel State Information (CSI), or Round-Trip Time (RTT)
are recorded at known locations [1]–[3], [5]. This pre-
constructed fingerprinting dataset will subsequently be used
to train a Machine Learning model to estimate the user’s
location based on newly observed WiFi signal measurements
collected at an unknown position. Thus, the accuracy of WiFi
fingerprinting-based systems rely heavily on the quality and
comprehensiveness of this fingerprinting dataset.

Although dense and spatially uniform WiFi fingerprint
data collection and construction are theoretically optimal, its
practical implementation faces significant challenges, includ-
ing intensive labour demands and high maintenance cost [5],
[6]. To ensure the accuracy of the fingerprinting dataset,
precise ground truth location acquisition must be carried out
prior to the actual collection of WiFi signal measurements.
Moreover, to capture the variability and stability of signals,
each reference point (RP) typically requires data recording
for over one minute. For example, conducting a systematic
site survey in the open spaces of a university building floor
measuring 92 × 15 metres at 1-metre intervals demands more
than 40 hours of manual effort by a human tester [7]–[9].
Additionally, to address the temporal changes in the indoor
environment and fluctuations in WiFi signal characteristics,
ongoing maintenance and periodic recalibration are neces-
sary [1], [10]–[13].

To tackle these challenges, data augmentation techniques
have been widely adopted in the literature. Data augmen-
tation was proposed as a part of a broad set of techniques
designed to enhance the performance of machine learning
and deep learning models by introducing additional infor-
mation [14]–[17]. In WiFi fingerprinting data construction,
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data augmentation is used either as a method to generate
synthetic WiFi data samples in uncovered areas to reduce
human labours, or to enrich the WiFi fingerprinting dataset
by changing some characteristics of the training dataset itself
for positioning performance enhancement.

However, despite the growing number of data augmen-
tation methods proposed in the literature, there remains a
lack of systematic analysis of their strengths, limitations,
and comparative performance. To address this need, our
paper presents a comprehensive review and analysis of
over 70 recent research works on WiFi fingerprinting data
augmentation. Specifically, we examine and compare key
aspects such as testbed types and sizes, the total number of
collected data, the total number of real-world data used as
input to augmentation models, the total number of synthetic
data generated, and the positioning performance before and
after augmentation. Through this analysis, the paper aims
to provide valuable insights into the most widely adopted
augmentation techniques, the most detailed performance
comparisons to date, the most effective data augmentation
methods and most efficient ratios of synthetic to original
input data for positioning performance improvement. Addi-
tionally, we explore current trends and challenges in WiFi
fingerprinting data augmentation and highlight promising
directions for future research on more efficient and robust
data construction methods.

In summary, our paper makes the following contributions:

• We conducted an in-depth and extensive analysis of
over 70 WiFi fingerprinting data augmentation research
papers, from physics-driven propagation model to the
latest generative models, providing a comprehensive
overview of the current state-of-the-arts.

• We present a novel taxonomy of WiFi fingerprinting
data augmentation approaches to represent the current
landscape of research and practice. Specifically, we
categorise all existing methods into 6 groups: tradi-
tional methods, propagation model, machine learning
methods, deep learning methods, hybrid methods, and
others.

• We systematically identify and analyse the key char-
acteristics of the existing WiFi fingerprinting data aug-
mentation methods, including those not explicitly stated
in the original research paper. Specifically, it examines:
(1) the total volume of data collected, (2) the quantity
of real-world data employed as input for augmentation
models, (3) the total amount of synthetic data generated,
and (4) positioning performance metrics both before
and after data augmentation for the included methods.

• We identify the most effective data augmentation meth-
ods and most efficient ratios of synthetic to original
input data that enhance WiFi-based indoor positioning
accuracy.

The remainder of this paper is structured as follows. Sec-
tion II introduces the review focus and research methodology

adopted by this paper. Section III provides detailed and
comprehensive descriptions of all trending data augmentation
methods in WiFi fingerprinting. Section IV reveals the posi-
tioning performance with data augmentation in relationship
to numerous factors. Finally, Section V concludes the paper.

II. REVIEW SCOPE AND METHODOLOGY
To ensure the reproducibility of the literature selection
process, this review adopts a systematic methodology in-
spired by the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) guidelines [18].
The PRISMA framework follows a structured four-phase
process: (1) Identification (searching databases with pre-
defined keywords), (2) Screening (filtering records based
on titles/abstracts/contents), (3) Eligibility (assessing full-
text articles against inclusion/exclusion criteria), and (4)
Inclusion (finalizing selected studies). This section outlines
the research scope in detail, provides the database, key-
words and inclusion/exclusion criteria utilised, and describes
the systematic approach used to search for, select, screen,
include, exclude, and analyse existing WiFi fingerprinting
data augmentation methods, thereby ensuring a rigorous and
comprehensive examination of the topic.

A. REVIEW FOCUS
This paper is dedicated to providing a comprehensive re-
view and in-depth analysis of current data augmentation
methods currently used in WiFi fingerprinting, with the goal
of offering valuable and unique insights into the trends
and challenges in this field. Our primary focus is on re-
search papers that explore synthetic data generation and
dataset enrichment for WiFi fingerprinting, specifically
in the dataset construction stage of the indoor position-
ing systems. Therefore, studies that primarily focused
on transfer learning, rapid adaptation to new indoor
environments, and WiFi fingerprinting dataset update
towards environment changes were excluded from this
review. Studies on indoor positioning systems using other
wireless signals, such as BLE, UWB and 5G, are excluded
from this review. To ensure a comprehensive review, this pa-
per also includes research that, while not specifically focused
on proposing novel WiFi fingerprinting data augmentation
methods, employs widely-used models or approaches, or
generates synthetic data related to enrich the fingerprinting
dataset.

B. PAPERS SELECTION CRITERIA
To perform an extensive search and determine the highly
relevant WiFi fingerprinting data augmentation research,
the following keywords were used: “WiFi,” “WLAN,” “in-
door,” “localization,”, “localisation,” “indoor positioning,”
“navigation,” and “fingerprinting”. To explore general data
augmentation methods in the dataset construction stage
of WiFi fingerprinting, we employed keywords including
“data”, “radio map”, “construction”, “collection”, “syn-
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thetic”, “synthesis”, “augmentation”, “generation”, and
“generative” in our search. These keywords were searched
in the title, keywords, and main body of the research papers
on well-known websites and research platforms such as
Google Scholar, Web of Science, IEEE Xplore, ACM Digital
Library, ScienceDirect and SpringerLink. Additionally, re-
search publications that include a comparison table covering
a selected number of WiFi fingerprinting data augmentation
methods were also incorporated into the scope of the litera-
ture search [19]–[22].

The inclusion criteria for studies in this review were as
follows:

• Peer-reviewed articles published in English;
• Studies employing quantitative designs that specifically

analyse positioning performance, particularly in the
context of augmentation;

• Studies intended to either reduce the human effort in
WiFi fingerprinting data collection and construction,
or improve the performance of the indoor positioning
models on existing testbeds;

• Studies that either generated synthetic WiFi fingerprint-
ing data samples or enriched existing training datasets.

Exclusion criteria encompassed grey literature and non-
empirical studies. Furthermore, in accordance with the cri-
teria and our research scope, studies focusing on transfer
learning methods, data augmentation techniques aimed at
rapid deployment in new indoor environments, and WiFi
fingerprinting dataset update methods towards environment
changes were excluded from consideration. For research pa-
pers employing multiple distinct data augmentation methods,
the positioning performance corresponding to each method
will be recorded separately. To ensure relevance to the
current trends in WiFi fingerprinting data augmentation,
only research articles published post-2015 were included. A
comprehensive literature search was conducted across major
research platforms using the previously specified keywords,
initially identifying 243 papers. After removing duplicates
and excluding outdated or less relevant studies, titles, ab-
stracts, and keywords were evaluated to eliminate works
unrelated to WiFi fingerprinting and data augmentation (e.g.,
studies focusing on fingerprint data augmentation for BLE).
Subsequently, through meticulous manual review and critical
analysis of each paper’s technical content, methodological
approach, and experimental validation, the selection was
refined to a final set of over 70 publications.

III. WIFI FINGERPRINTING DATA AUGMENTATION
Data augmentation was proposed as a data-space solution to
addressing the challenges of limited data. The goal of data
augmentation is to enhance the quantity and quality of the
training data samples so that better machine learning and
deep learning models can be built using them [14]–[17].

As WiFi fingerprinting heavily relies on the positioning
models to match user-reported WiFi signal measurements

to a pre-constructed fingerprint database, it is highly data-
intensive. To reduce the human effort in the collection and
construction of WiFi fingerprinting datasets or to enhance
the performance of the positioning estimation model trained
on the datasets, numerous data augmentation methods were
adopted in the literature to enrich and expand the pre-
collected WiFi fingerprinting datasets (see Figure 1).

FIGURE 1: The overview of the WiFi fingerprinting data
augmentation methods included in this review. It is observed
that deep learning and traditional methods are most popular.

Based on the augmentation technique utilised, the in-
cluded WiFi fingerprinting data augmentation methods are
categorised into 6 groups: traditional methods, propagation
model, machine learning methods, deep learning methods,
hybrid methods, and other methods (see Figure 2). For
the 70 included research papers, these six groups pro-
vide sufficient granularity for meaningful methodological
comparisons while remaining cognitively manageable for
readers. The taxonomy also allows for robust statistical
analysis of methodological trends, cross-group comparisons,
and identification of research gaps without creating exces-
sive complexity that would obscure key patterns in the
literature. Traditional data augmentation methods group are
methodologies that enhance pre-collected WiFi fingerprint
datasets by directly modifying the collected WiFi signal
measurements, without additional modelling and training.
Propagation model-based method group employ physics-
based signal modelling to characterise how WiFi signals
propagate through complex indoor environments, enabling
the estimation of signal strength at unknown locations.
Moving beyond purely physical models, machine learning
methods group identify and model the inherent patterns
within WiFi radio map using machine learning models and
generate synthetic data at unsurveyed areas. In contrast, deep
learning approaches, a subfield of machine learning, utilise
neural networks with multiple layers to automatically learn
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and apply complex transformations directly to large amounts
of WiFi signal measurements without any feature engi-
neering. Hybrid method group contain methodologies that
use more than one data augmentation methods or combine
multiple augmentation techniques, typically integrating ma-
chine learning and deep learning approaches (e.g., utilising
GPR+GAN [22], combining GAN and AE [23],etc.). Other
method group categorise unique strategies that do not fall
neatly into the aforementioned categories (e.g., Geography
Weighted Regression [24], Singular Value Decomposition
[25], Tensor Completion [26], etc.).

This section will present the fundamental principles of the
six groups, supported by numerous examples from recent
research studies.

A. TRADITIONAL METHODS
Traditional WiFi fingerprinting methods are a group of
techniques that augment and enrich the pre-collected dataset
by directly altering the recorded WiFi signal measurements,
either in their preprocessed vector form or as transformed
signal measurement images, to improve the performance of
the positioning model. These preserve the original structure
and existing hidden patterns of the fingerprinting data while
adding controlled variations, introducing additional fluctua-
tion or generating new data samples that closely follow the
distribution of the original WiFi fingerprints. Since tradi-
tional methods require no extra model training, they are cost-
effective and time-efficient in creating new training data sam-
ples. The traditional data augmentation methods employed in
the literature include resampling, permutation, perturbation,
and interpolation (see Figure 3). It is observed from Figure 3
that interpolation is the most popular traditional method
owing to its capability to preserve the temporal and spatial
continuity of WiFi signals while effectively filling gaps in
sparse or noisy datasets without compromising structural
integrity.

1) RESAMPLING AND PERMUTATION
Resampling involves feature-level recombination of WiFi
signal measures, where new samples are synthesised by
randomly selecting and combining the values from the WiFi
readings from different Access Points (APs) at a reference
point, while preserving their statistical distributions and spa-
tial/temporal correlations. This was adopted by [27] where
for each original RSS sample row, retain it as the first
row and then generate multiple new synthetic samples by
randomly selecting RSS values from the existing measure-
ments for each AP at the same RP, as shown in Table 1.
By generating 4819620 data samples from the 9620 input
collected WiFi fingerprints, the proposed systems in [27]
reduced positioning accuracy by 4.17 metres.

Permutation in WiFi fingerprinting data augmentation is
to randomly reorder the WiFi signal measure values in the
fingerprints while maintaining the original statistical distribu-

TABLE 1: In the resampling method utilised by [27], the first
row “Aug 1” in the augmented dataset replicates the first row
“1” of the original WiFi RSS data samples. For the second
row “Aug 2” in the augmented dataset, the RSS values are
randomly chosen from the collected measurements for each
AP at the same RP as shown in dark grey colour.

# RSSI AP1 AP2 AP3 AP4 AP5 AP6 AP7

1 34 37 36 54 26 38 26
2 41 37 0 56 34 38 21
3 42 37 36 54 0 38 0
4 42 38 36 56 33 36 22
5 39 36 44 50 37 38 18
6 42 0 39 0 0 0 0
7 41 37 0 57 0 35 27
8 44 38 39 0 30 38 0
9 44 41 41 54 21 40 25
10 40 38 39 0 26 38 0
11 45 44 0 0 0 44 0
12 30 38 41 48 0 37 0
13 32 42 45 50 0 41 0
14 33 45 45 50 0 43 0
15 32 45 45 50 33 45 0
16 33 44 0 49 0 45 21
17 36 45 40 51 39 45 0
18 37 43 40 51 0 43 19
19 37 45 46 47 32 41 17
20 37 45 44 0 0 45 0

Aug 1 34 37 36 54 26 38 26
Aug 2 42 38 36 0 39 38 17

. . .
Augmented

data samples

Aug 501 36 44 0 50 32 41 0
Aug 502 41 37 0 56 34 38 21

tion. Synthetic data samples generated by permutation alters
the sequence of WiFi signal measurements without changing
their underlying characteristics. Given a WiFi data sample
R = [R1, R2, R3, . . . , RN ] recorded at a RP from a total
number of N APs, the data sample generated by permutation
is defined as:

Rperm = [Rσ(1), Rσ(2), . . . , Rσ(N)] (1)

where σ is a random permutation of indices [1, 2, . . . ,
N]. In [28], for each AP’s RSS measurements, the order of
measurements is shuffled to generates new synthetic data
matrices with the same statistical properties but different
temporal arrangements of RSS values, claiming an improve-
ment of 10%. However, no detailed empirical evaluation was
provided in the study to support the results.

Resampling and permutation are basic feature-level data
augmentation methods that generate new WiFi data sam-
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FIGURE 2: The novel taxonomy proposed to categorise the most popular data augmentation methods for WiFi fingerprinting
utilised in the literature.

FIGURE 3: The distribution of the traditional methods
employed in the research studies included in this review. It
is observed that interpolation is the most popular traditional
method because it effectively preserves the temporal and
spatial continuity of WiFi signals and fills gaps in sparse
or noisy datasets while maintaining structural integrity. .

ples by recombining and reordering of the collected WiFi
signal measures, without introducing any unseen values.

2) PERTURBATION
Perturbation is a feature-level data augmentation tech-
nique that introduces variability or randomness into pre-

constructed WiFi fingerprinting datasets, aiming to enhance
model generalisation, reduce overfitting, improve robustness,
and explore alternative WiFi signal propagation behaviours.

In WiFi fingerprinting, perturbation method initially aims
at adding deliberate, structured and controlled changes to
the data to simulate realistic variations or domain-specific
distortions. Subsequently, the variations from perturbation
are often physics-guide or systematic-based. In [29], con-
sistent phase shifts in CSI data were utilised to mimic
imperfect transceiver clock synchronisation, while amplitude
variations were used to mimic hardware gain instability
or environmental attenuation (e.g., due to temperature). A
simpler perturbation was proposed in [30] that for each
RP’s WiFi signal measurements, a fixed constant C = −5
is subtracted sequentially from each non-zero RSS value,
creating N copies (where N= number of visible APs at the
RP). The authors in [30] also employed a mean-constrained
randomness to generates uniform random values between
the original RSS and its mean (µ) for each RP. Another
perturbation methods were proposed in [31] that introduce
physical displacements (∆L) to the original data’s spatial
coordinates. In other words, WiFi signal measurements were
collected not only at the exact RP but also in their nearby
spatial neighbourhoods, all of which were labelled with the
same ground truth coordinates of the original RP.

Specifically, in a testbed consisting of M RPs, the ob-
jective of training a positioning model is to minimise the
Mean Distance Error (MDE) (i.e., Original Loss) between
predicted locations (L̂m) and true locations (Lm):

Original Loss: L =
1

M

M∑
m=1

∥L̂m − Lm∥ (2)
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After the perturbation, the loss becomes:

Augmented Loss: Lpertur =
1

M

M∑
m=1

∥L̂m−(Lm+∆L)∥ (3)

where ∆L is small enough and satisfies ∥∆L∥ ≪ ∥L̂m∥.
Compared to resampling and permutation, perturbation

methods introduce unseen WiFi signal measurements to
the positioning model by incorporating variability into the
original fingerprinting datasets. Since WiFi signal measure-
ments are highly sensitive to environmental changes and the
multipath effect, particularly in non-line-of-sight (NLOS)
conditions where fluctuations are more pronounced, intro-
ducing controlled or random disturbance to the fingerprinting
data may enhance the quality and diversity of the datasets.

3) INTERPOLATION
As discussed in Section I, the collection and construction of a
high quality WiFi fingerprinting dataset are labour-intensive.
Therefore, researchers have proposed numerous methods to
automatically construct a dense dataset based on sparse WiFi
signal measurements.

Interpolation is a mathematical technique used to estimate
unknown WiFi fingerprinting values such as RSS measure-
ments at certain locations by leveraging known values at
nearby reference points from pre-collected sparse datasets.
Unlike resampling, permutation, and perturbation techniques
discussed above, which primarily aim to expand the original
complete dataset by generating additional data samples,
interpolation is intended to reduce the effort involved in
constructing dense fingerprint maps and to generate synthetic
data for areas not covered during site surveys. As shown in
Figure 3, 7 out of 15 included traditional method studies
employed interpolation for WiFi fingerprinting data augmen-
tation.

One common numerical model utilising polynomials for
WiFi fingerprinting interpolation is defined as follows:

R̂(dist) = aidist
3 + bidist

2 + cidist+ di (4)

where R̂(dist) is the interpolated WiFi signal measures
at a specific distance dist, ai, bi, ci, di are the coefficients
calculated from measured WiFi fingerprints to ensure conti-
nuity and smoothness in fitting the WiFi signal measures. For
instance, in [32] quadratic polynomial fitting was utilised to
model the WiFi RSS-distance relationship for dense finger-
print maps generation, where ai was set to zero, and dist was
the distance from the target point to the AP. In [33], dual-
frequency bands (2.4 GHz and 5 GHz) and a cubic spline
interpolation algorithm was leveraged to enhance localisation
accuracy and efficiency, where dist was the distance between
the interpolated RP and the pre-set anchor RP used for data
augmentation.

Another general formulation of WiFi fingerprinting inter-
polation using fingerprints from neighbour RPs is defined as
follows:

R̂(m) =

nsur∑
i=1

λiR(mi) (5)

where R(mi) is the recorded WiFi signal measures at
observation point RPmi

, nsur is the total number of surveyed
RPs in the specified neighbourhood of the unsurveyed RPm,
λi is the weights solved via different interpolation methods.
For instance, Kriging interpolation was utilised in [34] to
densify fingerprint maps by modelling spatial drift and RSS
variance via the weights λi generated by variograms. Vari-
ogram model is a function that describes the degree of spatial
dependence in a dataset and defines how correlation decays
with distance. By interpolating WiFi fingerprints for 84 RPs
from a pre-collected set of 28 RPs (25% of the 112 manually
collected RPs), the authors achieved a positioning accuracy
that was only 0.093 metres lower, while requiring just 25%
of the manual data collection effort. In [35], Linear Interpola-
tion and Delaunay Triangulation were employed to create ra-
dio map with reduced calibration, where Linear Interpolation
proved to have smaller WiFi RSS reconstruction error than
Delaunay Triangulation. To achieve automated fingerprint
database construction, an inverse distance weighting (IDW)
based interpolation method with signal propagation model
parameters named Signal-Propagated Modified Shepard’s
Method (SP-MSM) was proposed in [36] that outperforms
IDW and Kriging at 52% of test points. Synthetic Minority
Over-sampling Technique (SMOTE) is a statistical technique
used to mitigate class imbalance in datasets. By leveraging
interpolation, SMOTE generates synthetic data samples of
the minority class between existing minority class instances,
effectively increasing its representation in the fingerprinting
dataset. This method was adopted by [37] to address the
challenge of imbalanced datasets in Wi-Fi fingerprinting
for indoor positioning systems. By generating synthetic
fingerprints in areas that are hard to reach or not frequently
visited, SMOTE helps to reduce the number of real data
points required to construct a WiFi fingerprint dataset.

Since the interpolation methods either model the rela-
tionship between the distance and the signal measures or
leverage fingerprints from surrounding RPs for synthetic data
generation, they are easily affected by challenging conditions
in complex indoor environment and by severe multipath
effects in indoor spaces. At an unsurveyed RP, it is still dif-
ficult to accurately generate synthetic data samples to reflect
the actual WiFi signal propagation properties with limited
neighbouring RPs. Therefore, wireless signal propagation
models grounded in physical principles have been employed
in the literature to support data augmentation.

B. PROPAGATION MODEL
Although data augmentation techniques such as interpolation
can densify WiFi fingerprinting datasets and generate syn-
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thetic samples to compensate for missing values, the inherent
characteristics of WiFi signal propagation remain unknown.
Under NLOS conditions in complex indoor environment
as shown in Figure 4, wireless signals like WiFi suffer
greatly from multipath effect, reflection, scattering, attenua-
tion, fading and interference. Subsequently, the WiFi signal
measures at cornered and unvisited locations where drastic
interior changes happen remain a research challenge. While
interpolation assumes smooth spatial variation of WiFi signal
measurements in indoor space, propagation models take into
account the physical behaviour of radio waves in complex
indoor environment and the impact of obstacle and materials,
thus producing more reliable synthetic data generation. Fur-
thermore, in sparse but complicated fingerprinting scenarios,
interpolation methods often produce poor performance due
to their strong dependence on the availability of nearby RPs.
In contrast, propagation models can estimate WiFi signal
characteristics across broader areas by leveraging known AP
locations and environmental parameters.

FIGURE 4: The WiFi signal suffers greatly from multipath
effect, reflection, scattering, attenuation, fading and interfer-
ence under NLOS conditions in complex indoor environ-
ment. .

The well-known Log-Distance Path Loss (LDPL) Model
was utilised in [38] to account for indoor obstacles to
estimate WiFi RSS values at unmeasured locations based on
a small number of manually measured primary calibration
points where Gaussian filtering was applied to smooth out
RSS fluctuations. The LDPL model employed was defined
as:

P (d) = P0 − 10α log10

(
d

d0

)
+Xr (6)

where P0 is the reference power of WiFi signal at distance
d0, d0 is the reference distance from the AP to the reference
location where reference signal strength P0 is measured, α
is the path loss exponent determined by the actual indoor
space characteristics, d is distance between AP and targeted

location, and Xr is Gaussian random variable to mimic
shadow fading.

Instead of applying a single propagation model across
the entire indoor environment, the proposed method in [10]
divided the indoor area into architectural zones, such as
rooms or corridor segments, and independently estimates
path-loss parameters for each zone using measurements from
a small subset of reference points. The Zone-Based Remedy
Algorithm proposed in [12] also adopted the zone-based
idea and limited the search space to the most probable zone
and bounded the path loss exponent within a realistic range.
Specifically, the path loss exponent in Equation 6 was con-
strained within a range [αavg - 1, αavg + 1] to reduce error
propagation due to extreme values, where αavg is the average
value of α among each direction and antenna set. Similar
solution was employed in [39], where the authors proposed
using a log-distance path loss model, whose parameters are
estimated via a least squares approach, to generate RSS
values at unmeasured locations at a distance d from the AP,
defined as:

P (d) =

{
PA − 10αn log10(d) +Xσ, if RSS ≥ minRSS.
minRSS, otherwise.

(7)
where PA is the WiFi RSS measure at 1-metre distance,

αn is the path loss exponent, Xσ is the Gaussian noise to
model RSS fluctuation, minRSS is the minimum detectable
RSS threshold. Different from the basic Log-Distance Path
Loss Model, the modified model estimated the parameters
PA and αn for each small local area using the least squares
method, based on a set of nearby sparse RPs. It also avoided
physically implausible values by applying the minRSS
threshold.

To tackle indoor spaces with multiple walls and floors, the
Multi-Wall (MW) propagation model based on the COST
231 indoor path loss framework was employed in [40].
The MW model accounts for signal attenuation due to both
distance and environmental obstacles such as walls and
floors, requiring site-specific information and AP locations,
as defined below:

L(d) = L0+10αMW log10(d)+
∑
w

βwWw+
∑
f

βfFf (8)

where d is the distance between the AP location and
the targeted location, L0 is the reference loss at d0, αMW

is the MW model path loss exponent, βw and βf are the
attenuation per wall/floor, and Ww and Ff are the numbers
of walls/floors in the path. Likewise, a Robust, cost-effective
and scalable localization in large indoor areas (REAL) was
proposed in [41], employing a propagation model enhanced
by intelligent calibration techniques and taking into account
the wall attenuation. The modified path-loss model leveraged
is defined as:

P (d) = P0 + αREAL log10(d) + σREALNob +Xϵ (9)
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where P0 is the WiFi RSS value at 1 metre from the
AP, αREAL is the attenuation factor due to distance, σREAL

is the attenuation due to obstacles (e.g., walls), Nob is the
number of obstacles (walls) between AP and the targeted
location, Xϵ is the Gaussian modelling error. The REAL
adapted based on available training data: for small training
sets it assumed homogeneous APs (with the same P0 and ϵ),
while for larger training sets it modelled them separately for
each AP (heterogeneous). Moreover, REAL always included
wall count (Nob) in the model, which significantly improved
RSS prediction accuracy, particularly in complex indoor
layouts.

It was observed that most propagation models used in
the literature for WiFi fingerprinting data augmentation are
based on the LDPL model. The key differences among them
lie in how they account for signal attenuation caused by
obstacles, walls, and floors, as well as in their use of zone
division and refinement techniques to mitigate unrealistic
WiFi signal measure estimates. Though propagation model
is good for providing a basic understanding of signal attenu-
ation over distance, it cannot capture complex, non-linear
environmental factors. In contrast, machine learning and
deep learning-based data augmentation methods can learn
from real or simulated data, adapt to changing conditions,
and generate realistic, and diverse datasets.

C. MACHINE LEARNING METHODS
Building on the limitations of numerical data augmentation
approaches that leveraging traditional methods and propaga-
tion model, researchers have increasingly turned to machine
learning-based data augmentation methods for WiFi finger-
printing. These approaches utilise the ability of machine
learning algorithms to learn complex, non-linear patterns di-
rectly from data, without the need for manually defined rules
or assumptions about signal behaviour. By training on real-
world or simulated WiFI signal measurements, these models
can better capture the intricate spatial and environmental
dependencies that affect WiFi signal distributions in complex
indoor environment.

Gaussian Process Regression (GPR) is one of the most
popular machine learning-based data augmentation tech-
niques for WiFi fingerprinting. GPR is a supervised machine
learning technique used for regression tasks, where the goal
is to predict continuous values [42], [43]. It is a non-
parametric, Bayesian approach that models the underlying
function as a distribution over possible functions, rather than
assuming a fixed functional form. One of its key strengths
is that it provides not only predictions but also a measure of
uncertainty for each prediction, making it particularly useful
in applications like WiFi fingerprinting where data may be
sparse or noisy.

In GPR, a standard modelling of the joint distribution of
the observed outputs R and the predicted outputs R∗ as a
multivariate Gaussian distribution is expressed as:

[
R
R∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(10)

where R is the observed WiFi signal measures at RPs,
R∗ is the predicted signal measurement at unsurveyed RPs,
X is the ground truth location coordinates of known RPs,
X∗ is the unsurveyed RPs where WiFi signal measures are
to be generated, m(·) is the mean function that defines the
expected average value of the WiFi signal measure at a
given location, K(·) is the covariance function defining how
similar or correlated the WiFi signal measures are between
two locations.

This joint distribution was leverage in [44], [45] to predict
RSS values at unmeasured locations based on a limited set
of labeled reference points RPs. To improve the prediction
accuracy, compound kernels such as a combination of the
Matern kernel and the Rational Quadratic (RQ) kernel were
adopted to capture both smooth trends and local variations.
This allows GPR to model more diverse and nuanced rela-
tionships in the data by combining the strengths of different
kernel types. The Matern kernel provides flexibility in mod-
eling spatial correlations with controlled smoothness, while
the RQ kernel acts as a scale mixture of squared exponential
kernels, which allows it to model both short- and long-
range signal correlations simultaneously. These compound
kernels were also used in [46] to generate synthetic RSS
values at virtual RPs generated by globally and locally self-
adaptive approach in unsurveyed areas. The log-distance
path loss model was also incorporated with GPR in [47] to
reflect differences in signal propagation due to environmental
factors like obstacles and multipath effects. To capture non-
uniform WiFi RSS distributions more effectively in complex
indoor environments, a second-degree polynomial surface
fitting was utilised in [48] to determine the mean RSS
distribution, defined as:

R(x) = β0+β1lon+β2lat+β3lon
2+β4lat

2+β5lon× lat
(11)

where R(x) is the estimated mean WiFi RSS at location x,
lon, lat are the coordinates of x, β0 to β5 are the coefficients
learned from WiFi RSS measurements at known locations.
Moreover, two simpler mean functions, Const-Linear (CL)
and Quadratic Polynomial (QP), were proposed in [49] to
better model the spatial distribution of RSS based on empir-
ical signal characteristics observed in indoor environments,
defined as:

R(x)CL = β0 + β1lon+ β2lat (12)

R(x)QP = β1lon+ β2lat+ β3lon
2 + β4lat

2 (13)

To jointly model the outputs of multiple APs in a multi-
building, multi-floor environment, a Multi-Output Gaussian
Process Regression (MOGP) model with Linear Model of
Coregionalisation (LMC) was employed in [50], [51], de-
fined as:
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f(X) ∼ MOGP(m(X),K(X,X∗)) (14)

where f(X) represents the output vector of WiFi values
from multiple APs. The joint distribution is then given by:

[
f(X)
f(X∗)

]
∼

N
([

Au(X)
Au(X∗)

]
,

[
AK(X,X)A⊤ AK(X,X∗)A⊤

AK(X∗,X)A⊤ AK(X∗,X∗)A⊤

])
(15)

where A is the coregionalisation matrix that linearly maps
latent functions to outputs, u(·) is a set of latent functions,
each independently modelled as a Gaussian Process (GP),
capturing underlying spatial characteristics, such as WiFi
signal propagation behaviour that influence multiple APs.
The MOGP leveraged captured inter-AP correlations that
are particularly significant when APs are spatially close
(e.g., located on the same floor), and therefore enhance the
synthetic data generation.

FIGURE 5: The basic SVM algorithm, which finds the opti-
mal decision boundary (solid black line) that best separates
two classes of data (red and blue points). The dashed lines
represent the margin, and the support vectors (circled points)
are the critical data points that lie on the edge of this margin
and influence the position of the boundary.

Other machine learning-based data augmentation method
was reported in [52], where a Support Vector Regression
(SVR) model with linear kernel function was proposed
leveraging spatial and environmental features. Support Vec-
tor Machines (SVM) are supervised learning algorithms
that identify an optimal hyperplane for separating data into
distinct classes while maximizing the margin between them,
ash shown in Figure 5. As an extension of SVM, SVR aims
to find an optimal hyperplane for predicting continuous target
values, maximizing the margin while allowing deviations
within a specified tolerance threshold. The regression func-
tion in Linear SVR is defined as:

f(x) = w⊤x+ b (16)

where f(x) is the predicted RSS values, w is the weight
vector learned from the data to find the best-fitting regression
line while minimising prediction errors, b is the bias term,
x is the input variables. Specifically, the input variables the
proposed method used to model WiFi signal behaviour were
the positions of the RPs and APs, their in between distance,
and obstacle information, derived from a floor plan using
the Bresenham algorithm [52]. This allows for accurate RSS
estimation, especially for strong signals and in environments
where obstacles significantly affect signal propagation.

D. DEEP LEARNING METHODS
While machine learning methods like GPR have shown
promising results in modelling complex signal distribu-
tions for WiFi fingerprinting, they often rely on carefully
engineered features and may struggle with scalability in
high-dimensional environments. To address these limitations,
researchers have begun exploring deep learning-based data
augmentation techniques for WiFi fingerprinting, which can
automatically learn hierarchical representations of data and
generate realistic synthetic samples. Models such as Gen-
erative Adversarial Networks (GANs), Autoencoders (AEs),
Super-resolution Convolutional Neural Network (CNN) and
Deep Gaussian Process (DGP) have emerged as powerful
tools in the literature, as shown in Figure 6. These deep
generative models are capable of capturing intricate spatial
and temporal patterns in WiFi signals automatically, enabling
the generation of large, diverse datasets that enhance the
robustness and accuracy of indoor positioning systems.

FIGURE 6: Overview of the deep learning methods for
WiFi fingerprinting data augmentation in this review. GANs
are the most widely used deep learning approaches in the
literature because they generate highly realistic synthetic
WiFi data samples by adversarially learning complex signal
distributions and intricate patterns.
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1) GENERATIVE ADVERSARIAL NETWORK
Generative Adversarial Networks (GANs) are a powerful
class of deep learning models for synthetic data generation
to enrich and improve the WiFi fingerprinting datasets [53]–
[56]. A standard GAN is composed of two competing neural
networks: a generator that creates synthetic data sample and
a discriminator that attempts to distinguish between real and
generated data samples (see Figure 7).

In a standard GAN architecture, the generator (G) is
trained to produce synthetic WiFi fingerprinting data sam-
ples, by transforming a random noise vector (z) into a
synthetic (fake) fingerprint. The discriminator (D) receives
two types of inputs: real fingerprints from the training dataset
and synthetic fingerprints generated by G, and it learns to
classify them as REAL or FAKE. The generator is trained
to produce synthetic fingerprints that are indistinguishable
from real ones, while the discriminator is trained to correctly
identify whether a fingerprint is real or generated. This
adversarial training process continues until the discriminator
can no longer reliably distinguish between real and fake
samples. The objective function of GAN is defined as:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] +

Ez∼pz(z) [log(1−D(G(z)))] (17)

where x is the real data samples from the training fin-
gerprint dataset, z is the random noise vector, D(x) is the
discriminator’s estimate of the probability that x is real,
G(z) is the synthetic WiFi data samples generated from
noise z, Ex∼pdata(x) is the expected or average value of the
real WiFi data samples, Ez∼pz(z) is the expected or average
value over all possible noise vectors z drawn from the
distribution pz(z), V (D,G) is the objective function of the
min-max game between the discriminator D and generator
G, where D tries to maximise the value (i.e., become better
at distinguishing REAL from FAKE), G tries to minimise
the value (i.e., become better at fooling the discriminator).
A standard GAN was leverage in [57] and [58] to enrich
the fingerprint datasets by filling spatial gaps left by sparse
crowdsourced data and a public WiFi fingerprint dataset,
respectively.

Additionally, variants such as Conditional GANs (cGANs)
can be used to generate fingerprints conditioned on specific
locations or environmental contexts, making the synthetic
data even more useful for location or region-aware position-
ing, as shown in Figure 7. The objective function of cGAN
under the conditional label y is defined as:

min
G

max
D

V (D,G) = Ex∼pdata [logD(x|y)] +

Ez∼pz [log(1−D(G(z|y)))] (18)

Unlike a standard GAN, a conditional GAN incorporates
an additional input, such as a floor or building label, into both
the generator and discriminator. This allows the generator to

produce synthetic fingerprints tailored to specific locations,
and the discriminator to evaluate them in conditional con-
text. By conditioning on label information, cGANs enable
controlled and location-aware data generation, making them
particularly effective for augmenting data across diverse re-
gions in complex indoor environments. In [59], a conditional
GAN with conditional label of building and floor IDs was
utilised. The synthetic WiFi RSS signal measures were fur-
ther filtered using a distance-based algorithm to ensure only
those close to real samples are retained, enhancing the WiFi
fingerprint datasets without degrading model performance. A
conditional GAN with 0-1 Sketch was also proposed in [60]
enabling more effective and stable generation. The authors
in [61] proposed Semi-Supervised GAN, levering a generator
that accepted both noise vector and location labels as input to
produce location-specific RSS fingerprints, avoiding generat-
ing only unlabelled data like standard GAN. In [61] a shared
network architecture between the discriminator and classifier
was also employed to enable simultaneous data authenticity
verification and location classification.

To generate synthetic CSI data, a Amplitude Feature Deep
Convolutional GAN (AF-DCGAN) method was proposed
in [21] where raw CSI data is transformed into amplitude
feature maps that visually encode spatial signal charac-
teristics. DCGAN was also utilised in [62], composed of
a generator, a discriminator, and a classifier with shared
weights. The generator creates synthetic CSI fingerprints
from random noise, which are used alongside real unlabelled
samples to train discriminator and classifier. The authors in
[63] converted multidimensional WiFi signal measurements
into low-resolution (LR) fingerprint images, which are then
augmented using an Enhanced Super-Resolution GAN to
generate high-resolution (HR) images. These HR images
are subsequently transformed back into augmented signal
fingerprints, effectively densifying the fingerprint database.

In [64], the authors introduce Tensor-GAN, modelling Wi-
Fi fingerprints as a 3D low-tubal-rank tensor, effectively
capturing spatial and signal correlations. The generator is
designed as a tensor completion algorithm operating on
tubal-sampled data, enabling it to generate realistic synthetic
fingerprints from sparse samples. Tensor-GAN was also
reported in [65], which employs a transform-based 3D tensor
model to represent WiFi fingerprint samples. The generator
within TGAN, is designed to encode coarse-resolution fin-
gerprint tensors into sparse representations, which are then
transformed into higher-resolution fingerprint tensors.

Wasserstein GANs (WGANs) and a Pseudo Fingerprint
Map (PFM) were combined to enhance Wi-Fi fingerprinting
in 3D space in [66]. In WGAN, the traditional discriminator
is replaced by a ”critic” that assigns real-valued scores
to inputs to estimate the Wasserstein distance, a smoother
and more meaningful measure of how much effort it takes
to transform one probability distribution into another. To
generate synthetic CSI data samples, WGANs were used
in [67], clustering reference fingerprints using K-means
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FIGURE 7: The structure of Generative Adversarial Networks. The generator (G) is trained to produce synthetic WiFi
fingerprinting data samples, by transforming a random noise vector (z) into a fake fingerprint. The discriminator (D)
receives two types of inputs: real fingerprints from the training dataset and synthetic fingerprints generated by G, and it
learns to classify them as REAL or FAKE. Note that the labels are conditional labels for cGANs.

to identify spatial regions, determining the cluster of the
point to be located. A hybrid data augmentation frame-
work that combines Dirichlet distribution-based upsampling
and Wasserstein GAN with Gradient Penalty (WGAN-GP)
named extendGAN+ was proposed in [68]. The extendGAN+
first identified the location with the most data points to train
a base WGAN-GP model, which was then transferred and
finetuned using transfer learning to generate synthetic RSS
data for unsurveyed locations. Additionally, a filtering mod-
ule ensures the quality of generated samples by removing
outliers based on dissimilarity thresholds.

2) OTHER DEEP LEARNING METHODS
While GANs are effective for generating realistic synthetic
WiFi fingerprint data through adversarial training, Autoen-
coders (AEs) offer a simpler but stable alternative for data
augmentation. As shown in Figure 8, AEs are unsupervised
neural networks that learn efficient low-dimensional rep-
resentations (encodings) of input data and can reconstruct
the original input from these encodings (decodings). In
the context of WiFi fingerprinting, AEs can be trained to
learn compressed representations of RSS vectors and then
used to generate new, diverse fingerprints by introducing
controlled perturbations in the latent space before decoding.
By incorporating dropout regularisation during training, a
dropout AE was proposed in [69] to prevent overfitting
and improve the model’s ability reconstructing missing or
noisy WiFi data. To learn more robust and hierarchical
feature representations that are resilient to input perturba-
tions, Stacked Denoising Autoencoder (SDAE) was used
in [70] by introducing noise to the input data and stacking

multiple denoising layers. Furthermore, Variational Autoen-
coders (VAEs) were employed in the literature. VAE is a
probabilistic extension of AEs, allow for sampling from a
learned latent distribution, making them particularly well-
suited for generating new fingerprint samples that maintain
the structural characteristics of real data. In [71], a VAE was
used to learn the underlying distribution of real RSSI data
collected from low-cost ESP32 devices. RSS readings from
eight reference nodes were reshaped into 3×3 grayscale im-
ages and fed into a convolutional VAE with a 2-dimensional
latent space, enabling the generation of synthetic WiFi RSS
values. The conditional VAE extending the traditional VAE
by incorporating additional conditional information (e.g.,
location or floor data) was leveraged in [72] enabling it to
generate context-aware and more controllable synthetic data
tailored to specific scenarios.

In addition to the popular GAN- and AE-based WiFi
fingerprint data augmentation methods, other deep learning
methods have also been explored. DeepMap, a novel system
that applies Deep Gaussian Processes (DGPs) was proposed
in [73] and [74] to address the challenges of indoor radio
map construction. The authors identified the limitation of
conventional GPR methods in modelling non-stationary RSS,
particularly under conditions of sparse training samples.
To overcome this, they utilised a two-layer DGP model
that learns the latent, nonlinear relationship H between
RSS values and spatial locations, leveraging a Bayesian
variational inference method to train the model offline and
optimise the marginal likelihood. In the Fingerprint Augment
based on Super-Resolution (FASR) framework proposed by
[19], sparse WiFi fingerprint data were converted into low-
resolution images and then fed into super-resolution CNN
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FIGURE 8: The structure of the Autoencoder methods for
WiFi fingerprinting data augmentation. Autoencoders learn
efficient low-dimensional representations of input WiFi data
in the encoding part, and reconstruct the WiFi data samples
from these input in the decoding part.

models to generate high-resolution fingerprint images. These
enhanced images were then converted back into augmented
WiFi fingerprint databasets. Inspired by Between-Class (BC)
learning from image and sound recognition domains, the
authors in [75] proposed a multi-layer regression (MLR)
network to estimate RSS distributions at unsurveyed loca-
tions by modelling each access point’s signal as a Gaussian
distribution conditioned on location.

E. HYBRID METHODS AND OTHER METHODS
In addition to the previously introduced data augmentation
techniques, researchers in the field often combine multiple
methods to enhance the quality of the generated synthetic
WiFi data samples.

Numerous methods were proposed to enhance the syn-
thetic data generation by GPR. For instance, a novel data
augmentation method leveraging Principal Component Anal-
ysis (PCA) and GPR was proposed in [76]. PCA, as shown
in Figure 9, was employed to select the most informative
APs while GPR was used to model the relationship be-
tween the RP coordinates and the RSS values, enabling
the generation of synthetic WiFi fingerprinting data for
unsurveyed locations. And in the framework proposed in
[77], GPR was employed to generate initial fingerprints
which were then refined using a VAE to capture inter-
access-point relationships. The KMGPR (K-Means Gaussian
Process Regression) was proposed in [78] that used GPR
with a Gaussian mean function to more accurately model
WiFi RSS values. To reduce GPR’s high computational cost,
K-Means was applied to divide RPs, enabling parallel GPR
processing within each cluster and supporting efficient WiFi
fingerprinting data updates.

Several hybrid GAN-based approaches have been pro-
posed in the literature. These include the combination of
linear interpolation with GANs [20], the integration of deep
neural networks (DNNs) with GANs [79], the fusion of GPR
and Least Squares GANs (LSGANs) [22], as well as the
combination of AE with GANs in [23]. Specifically, DNN

FIGURE 9: The basic implementation of PCA, a technique
used to reduce the dimensionality of data by projecting it
onto new axes (PC1 in red and PC2 in green) that capture the
most variance. PC1 is the direction of maximum variance,
while PC2 is orthogonal to it and captures the remaining
variance.

was trained on the original labeled data to add pseudo-label
for realistic synthetic data generated by GAN in [79]. In
[22], GPR was first used to provide coarse RSS estimations
at unsurveyed locations (constrained spaces like cubicles
and private offices). These estimations are then used as
structured input to the LSGAN generator. To validate the
performance of GPR-LSGAN, a mobile robot equipped with
LiDAR SLAM and WiFi sensing capabilities was utilised. To
adaptively update the WiFi fingerprinting dataset by filtering
and incorporating new APs while preventing unnecessary
expansion, WiFi RSS signal measures from a single refer-
ence floor and the spatial layout of APs on other floors were
utilised in [23] to train the AE and GAN, respectively.

Other novel methods were also utilised in the literature
to model the WiFi fingerprinting data augmentation from a
different perspective. A RSS Geography Weighted Regres-
sion (RGWR) method was proposed in [24] by taking into
account the variation in signal attenuation across different
regions with weighting spatial correlations to automatically
construct and update WiFi fingerprinting dataset using self-
made low-power WiFi anchors alongside modified APs.
The Sparsity Rank-Singular Value Decomposition (SRSVD)
method was proposed in [25] to recover missing fingerprint
data effectively. The SRSVD combined with the K-Nearest
Neighbor (KNN) leverages the spatial and temporal corre-
lations of fingerprints, which result in a low-rank matrix, to
handle missing columns or rows in the matrix. To effectively
reconstruct and update the WiFi fingerprinting datasets,
Regularised Singular Value Decomposition (RSVD) method
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(a) The typical testbeds in the public UJIIndoorloc datasets [6]. (b) The building floor testbed covering an area of 600 m2 used in [75].

(c) The building floor testbed covering an area of 4000 m2 used
in [33].

(d) The building floor testbed covering an area of about 450 m2 used
in [40].

FIGURE 10: The typical testbeds for WiFi-based indoor positioning data augmentation leveraged in the literature.

was employed in [11] that reconstruct the fingerprint matrix
with measurements from a small number of RPs and employs
the stability of RSS differences between neighbouring RPs
and adjacent links to mitigate short-term RSS variations.
The WiFi fingerprinting dataset construction problem was
formulated as a Low-Rank Tensor Completion (LRTC) issue
in [26]. The LRTC method leverages the strong correla-
tions within the fingerprinting data to estimate RSS values
at unmeasured RPs, hence reducing human efforts in the
collection while maintaining high positioning accuracy. In
the DataLoc+ proposed in [80], stochastic corruption and
smoothing were combined by collecting streams of WiFi AP
signals, then generating multiple augmented snapshots by
randomly shuffling and sampling varying portions of the AP
data. These snapshots simulate real-world signal variations
(e.g., fading, shadowing) by including fewer or more APs
and signal strength variations.

IV. DATA AUGMENTATION PERFORMANCE ANALYSIS
To offer valuable insights into the most widely adopted
augmentation techniques, a detailed and comprehensive per-

formance analysis of WiFi fingerprinting data augmentation
methods is provided (see Table 2). Through meticulous,
time-consuming, and often painstaking manual analysis and
assessment, the collected data size, input data size for
augmentation, generated synthetic data size, and positioning
performance metrics (both before and after augmentation)
are carefully extracted, recorded, and compared. This process
is exceptionally difficult and labour-intensive because of
incomplete or missing information, manual extraction from
figures and tables and inconsistent reporting standards. As
discussed in the footnote of Table 2, for papers offering
positioning accuracy in Mean Distance Error (MAE) and
Root Mean Square Error (RMSE), we record the results as
presented. For papers measuring the augmentation perfor-
mance using zone hit rate, only the positioning accuracy in
percentage (%) are recorded in Table 2. For papers that didn’t
present their indoor positioning performance explicitly, we
either manually extracted them from Cumulative Distribution
Function (CDF) curve or results histograms. For systems
assessing the WiFi RSS data augmentation accuracy, the
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error in dBm is used. This highlights a key challenge in
current WiFi data augmentation methods: the absence of
guidelines or standards for evaluating and presenting the
performance of these methods.

Excluding studies that did not report data sizes explicitly
or implicitly, 50 different data augmentation methods were
left for the following performance analysis. In this analysis,
the indoor positioning performances of the WiFi fingerprint
datasets before and after different data augmentation are
compared. In addition, we examine the relationship between
positioning performance and several factors: the sample size
of input data for data augmentation, the sample size of
generated synthetic WiFi data, the total number of WiFi
fingerprint samples, and the generation ratio of synthetic to
input data. To assess the influence of data augmentation on
WiFi fingerprinting, we further evaluate its contributions to
positioning accuracy improvements to assess the impact of
redundancy in training data. It is worth noting that only two
of the included studies employed CSI [29], [81], and none
utilised RTT. Consequently, this review does not examine
the impact of different WiFi fingerprinting features on aug-
mentation performance. For the same reason, namely, the
insufficient number of included studies reporting hardware
specifications and how often models can be updated, this
review does not evaluate the hardware or computational re-
sources required and the real-time feasibility of the included
methods. Since the included research papers evenly collected
the data samples per RP, the impact of class imbalance will
not be discussed.

To investigate the correlation between WiFi data samples
and indoor positioning performance, we manually extracted
the input data size, generated data size, and overall data
size (input+generated) from the included data augmenta-
tion methods. As shown in Figure 11, deep learning-based
approaches generally demonstrate improved positioning ac-
curacy with an increased number of input data samples
for augmentation training. Interestingly, most traditional
method-based data augmentation approaches achieved
reliable positioning accuracies of less than 4 metres,
whereas some machine learning-based methods resulted
in positioning accuracies exceeding 8 metres. In addition,
increasing the input to propagation model-based methods
appeared to reduce positioning accuracy. This is because in
propagation model-based systems, an increase in input data
corresponds to a larger testbed. This expansion introduces
numerous complex indoor scenarios that significantly de-
grade the accuracy of single WiFi signal propagation model.
In examining the relationship between both generated and
total (input+generated) data size, and positioning perfor-
mance across various techniques, including deep learning,
traditional, propagation model, and hybrid approaches, it
is observed that increased data size contribute to enhanced
positioning accuracy.

(a) The relationship between real-world input data size for data augmen-
tation and the final positioning performance after augmentation.

(b) The relationship between generated synthetic data size and the final
positioning performance after data augmentation.

(c) The relationship between total data size and the final positioning
performance after data augmentation.

FIGURE 11: The correlation between post-augmentation
performance and data sizes for WiFi fingerprinting. Perfor-
mances are analysed against three key variables: input data
size, generated (augmented) data size, and total data size
(input + generated), all plotted on logarithmic scales. It is
observed that larger WiFi fingerprint data size cannot always
ensure a more robust positioning accuracy, especially below
100,000 data samples.
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TABLE 2: The indoor positioning performance comparison of the WiFi dataset before and after data augmentation.

Paper Testbed type Testbed size † (m2) Collected data size Augmentation
method

Input data size* Generated data size Pre-Aug perf** (m) Post-Aug perf** (m)

[28]
University building ˜36000 5785 Permutation 5785 N/A 7.5975 6.83775

[44]
Building floor 593.92 11640 GPR 11640 24120 6.914 5.121

[30]
Building floor 1664 10360 Perturbation 9602 113158 5.62 2.54

[30]
Building floor 1664 10360 Perturbation 9602 576120 5.62 2.7

[80]
Hospital 1 Floor 450 Corruption and

smoothing
450 1800-2250 84.40% 100.00%

[60]
Building floor 273 120 RPs conditional GAN 120 RPs N/A 1.235 0.678

[19]
Office room, simulation 52.25, 64 627000, 675000 Super-resolution

CNN
84000, 75000 543000, 600000 1.16, 1.11 1, 1.07

[76]
Reading room 1000 727 RPs GPR+PCA 61 RPs 994 RPs 3.2 4

[20]
Building floor 173, 51 1369, 14300 Interpolation+GPR 1369, 14300 2m resolution, 0.1

resolution
7.44, 1.67 5.05, 1.51

[20]
Building floor 173, 51 1369, 14300 GAN 1369, 14300 684, 2860 7.44, 1.67 6.33, 1.56

[27]
Building floor 1664 9620 Resampling 9620 4819620 5.62 1.45

[79]
Building floor ˜9000 1000 GAN+DNN 1000 1000 4.1 3.47

[45]
University building 22570 697 GPR 697 Very dense 8.94 8.46

[24]
Building floor, shopping
mall

550, 2875 52 RPs, 163 RPs GWR N/A 52 RPs, 4890 N/A 2.4, 5.1

[32]
Laboratory room 150 48 RPs Interpolation 16 RPs 32 RPs 1.03 1.01

[36]
Office room 92.4 64 RPs Interpolation 17 RPs 47 RPs 2.72 ± 1.12 3.06 ± 1.54

[38]
Building floor 1600 > 1600 Propagation model >1600 ˜140 out of 150 RPs N/A 0.6

[21]
Classroom 49 245000 DCGAN 245000 490000 1.34 0.92

† For data augmentation methods evaluated on different testbeds, we used comma to separate them in the same line.
* The Input Data is the size of the input WiFi data to the augmentation methods.
** The Pre-Aug perf & Post-Aug perf are the positioning accuracies of the system before and after the data augmentation. Due to the challenges in consistently reporting positioning performance in the
reviewed research publications, m is used for regression systems while the hitting rates (%) are used for classification systems. For systems assessing the WiFi RSS data augmentation accuracy, dBm is used.
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Paper Testbed type Testbed size † (m2) Collected data size Augmentation
method

Input data size* Generated data size Pre-Aug perf** (m) Post-Aug perf** (m)

[82]
Building floor 5376 22000 cGAN 22000 5500 1.23 3.34

[22]
Building floor 700 3100 GPR+LSGAN 3100 4000 1.79 1.98

[46]
University building 22570 697 GPR 697 23,002 8.94 8.27

[73]
Building floor 2300 157 RPs DGP 157 RPs N/A 1.569 3.8447

[72]
University building Two building floors 32 cVAE ≫32 3612 32.76 12.91

[57]
Corridor, laboratory 135, 120 0.5 Hz GAN N/A N/A 1.8870, 2.5136 2.0902, 1.8945

[40]
Building floor ˜450 41 Propagation model 41 285 2.5 1.8

[39]
Building floor 3200 168960 Propagation model 25920 142640 3.341 3.344

[74]
Building floor, building
floor

2300, 860 157 RPs, 82 RPs DGP 157 RPs, 82 RPs N/A 1.569, ˜2.1 3.8447, ˜6.2

[37]
University building N/A 2000 SMOTE 1500 500 88.74% 88.10%

[59]
University building DSI 1, DSI 2 1369, 576 cGAN 1369, 576 25712, 24350 0.88, 1.29 0.74, 0.98

[23]
University building Four building floors 63 RPs GAN+AE 63 RPs N/A 89.66% 88.59%

[61]
Office building Five building floors 1700 GAN 1700 N/A ˜90.5% ˜91.5%

[48]
Laboratory room 590.96 50 RPs GPR N/A 288 RPs 3.389 1.718

[63]
Conference room 12 60 RPs × 2 min GAN 60 RPs × 2 min 10000 RPs × 1 min 2.4337 2.1094

[58]
Shopping mall One shopping mall

floor
N/A GAN N/A 100% of the collected ˜87.5% ˜96%

[25]
Building floor N/A 4160 SVD 4160 N/A ˜7.5, 80% of the time ˜8.1, 80% of the time

[47]
Corridor 1050 125 RPs GPR 125 RPs All of the APs from

15 TPs
1.8 1.7

[52]
Two library floors 300 92 RPs SVR 8 RPs N/A 3.41 3.94

† For data augmentation methods evaluated on different testbeds, we used comma to separate them in the same line.
* The Input Data is the size of the input WiFi data to the augmentation methods.
** The Pre-Aug perf & Post-Aug perf are the positioning accuracies of the system before and after the data augmentation. Due to the challenges in consistently reporting positioning performance in the
reviewed research publications, m is used for regression systems while the hitting rates (%) are used for classification systems. For systems assessing the WiFi RSS data augmentation accuracy, dBm is used.
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Paper Testbed type Testbed size † (m2) Collected data size Augmentation
method

Input data size* Generated data size Pre-Aug perf** (m) Post-Aug perf** (m)

[64]
University building 1600 N/A Tensor GAN Using 40% of the

collected
N/A 0.32, 80% of the time 0.19, 80% of the time

[77]
University building ˜500 16850 GPR+VAE 16850 55 RPs 5.16, 95% of the time 4.4, 95% of the time

[10]
Building floor, office 918, 252 35400, 1560 Propagation model 8600, 504 26800, 1056 1.45, 1.19 2.21, 1.41

[10]
Building floor, office 918, 252 35400, 1560 Interpolation 8600, 504 26800, 1056 1.45, 1.19 2.18, 1.44

[78]
Building floors 560, 3500 2100, 1300 GPR+K-means 1200, 900 2100, 1300 ˜3, 80% of the time,

∼3.2, 80% of the
time

∼3.5, 80% of the
time, ∼3.6, 80% of
the time

[31]
Lab 11.52 15 RPs Perturbation N/A N/A 1.42 0.97

[75]
Building floor 600 1050 MLR 1050, 415 3150, 1245 3.58, 3.97 3.12, 3.35

[62]
Office room 49.88 6400 DCGAN 6400 labeled, 32

labeled+6400 un-
labeled

6400, 32 87.71%, 68.78% 87.84%, 85.78%

[49]
Office room, building
floor

52.25, 560 627000, 2100 GPR 45000, 200 N/A, N/A 1.3, 80% of the time,
3, 80% of the time

1.4, 80% of the time,
3.8, 80% of the time

[11]
Office room 108 470 SVD 40 N/A 0.78, 50% of the time 1.1, 50% of the time

[65]
Indoor region 96 ∼119 RPs Tensor GAN ∼119 RPs ∼1080 RPs 8, 90% of the time 4, 90% of the time

[83]
Four rooms N/A 2000 GAN 1000 1000 95.30% 97.20%

[50]
University building 108703 21049 Multi-Output GPR 21049 N/A 8.61 8.42

[71]
Classroom 151.4 1489 VAE 1489 N/A N/A 3 dBm

[84]
Building floor, shopping
mall

total 8400 N/A cVAE N/A 772, 7642 4.5, 8.5 3.1, 6.5

[85]
Simulation 10000 550 RPs DCGAN 550 RPs N/A 2, 8.23 1.68, 5.57

[81]
Laboratory room 33.75 8960000 GAN 1792000,

8960000
44800000, 44800000 71.2%, 93.3% 95.1%, 98.2%

[67]
Indoor region 100 100, 400 WGAN 100, 400 100, 400 1.376, 1.376, 1.12, 1.12,

† For data augmentation methods evaluated on different testbeds, we used comma to separate them in the same line.
* The Input Data is the size of the input WiFi data to the augmentation methods.
** The Pre-Aug perf & Post-Aug perf are the positioning accuracies of the system before and after the data augmentation. Due to the challenges in consistently reporting positioning performance in the
reviewed research publications, m is used for regression systems while the hitting rates (%) are used for classification systems. For systems assessing the WiFi RSS data augmentation accuracy, dBm is used.
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Paper Testbed type Testbed size † (m2) Collected data size Augmentation
method

Input data size* Generated data size Pre-Aug perf** (m) Post-Aug perf** (m)

[66]
Simulation 25, 1500 75, N/A WGAN 75, N/A 600, 9000 1.3, 2.11 0.86, 1.41

[86]
Building floor N/A 360000 cGAN 360000 15000 1.25 0.99

[51]
Building floor ∼9000 1396 RPs Multi-Output GPR 1396 RPs 1396 RPs 4.2 3.4

[70]
University building N/A 23 per RP SDAE 23 per RP >25 per RP 9.42 8.37

[29]
Hallway, office room 46.45, 139.35 4000, 4000 Perturbation 4000, 4000 24000, 20000 0.994, 5.205 0.308, 1.349

[29]
Hallway, office room 46.45, 139.35 4000, 4000 Perturbation 4000, 4000 24000, 24000 1.413, 5.726 0.832, 2.856

[69]
Two building floors N/A 9232, 4550 AE 6465, 3415 907, 843 1.1, 80% of the time,

0.6, 80% of the time
0.9, 80% of the time,
0.4, 80% of the time

[68]
Three building floors 46369 16157 WGAN 16157 (4-104 per

location)
75 per location 2.278 2.023

[34]
Laboratory room 112 112 RPs Interpolation 28 RPs 84 RPs 1.172 1.265

[33]
Building floor 4000 11600 Interpolation 11600 N/A 5.1 3.7

[41]
Building floor 3750 389 RPs Propagation model 10 RPs 379 RPs 5.7 4.75

[12]
Classroom 36 48 RPs Propagation model 32 RPs, 24 RPs 16 RPs, 24 RPs N/A 1.8, 1.25

[35]
Building floor ∼1000 ∼80 RPs Interpolation ∼80 RPs ∼20 RPs 4.2743 dBm 3.9726 dBm

[26]
Building floor 696.54 832 RPs Tensor Completion 20% of the col-

lected
80% of the collected 0.9, 80% of the time 1.8, 80%of the time

[87]
Shopping mall 29400 55 RPs Interpolation 55 RPs 275 RPs 6.38 2.86

† For data augmentation methods evaluated on different testbeds, we used comma to separate them in the same line.
* The Input Data is the size of the input WiFi data to the augmentation methods.
** The Pre-Aug perf & Post-Aug perf are the positioning accuracies of the system before and after the data augmentation. Due to the challenges in consistently reporting positioning performance in the
reviewed research publications, m is used for regression systems while the hitting rates (%) are used for classification systems. For systems assessing the WiFi RSS data augmentation accuracy, dBm is used.
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The improvements in indoor positioning achieved through
data augmentation methods, focusing on the relationship
between generated data sizes and the ratio of generated to
input data are examined in Figures 12 and 13. Traditional
methods achieve larger absolute improvements in metres
with higher generated-to-input ratios, though the growth in
improvement percentage slows down after approximately
sixfold augmentation, suggesting diminishing returns. It
is interesting to see that traditional methods brings the largest
average improvement across all different approaches. Propa-
gation model-based approaches initially exhibit performance
degradation (even negative improvements) at low ratios but
show slight accuracy recovery beyond fivefold augmentation.
This is because some related studies focused on reducing
human effort in WiFi fingerprint data collection and con-
struction, thus utilising limited real data samples as input.
This degradation arises because the hybrid methods used
in [22] were evaluated against an entire dataset meticulously
collected by human testers, whereas the approach in [78]
utilised only up to 70% of the available data for augmen-
tation training. Using only a small portion of the collected
dataset for data augmentation typically leads to a decrease
in positioning accuracy. However, traditional methods pro-
posed in [32], [41], which utilised less than 30% of the
collected data, still achieved post-augmentation performance
improvements of 0.02 and 0.95 metres, respectively. In
comparison, deep learning-based methods presented in [19],
[64], [69] using up to 60% of the collected data also achieved
promising post-augmentation improvements of 0.16 metres,
0.13 metres, and 0.2 metres, respectively, demonstrating a
more robust and reliable performance.

Deep learning-based methods maintain steady improve-
ment even with increasing ratios, peaking after threefold
augmentation, beyond which the performance improvement
stops to increase. This indicates that the performance im-
provement (not performance) from data augmentation using
deep learning methods saturates beyond a threefold aug-
mentation ratio. Therefore, a threefold ratio represents the
most effective and efficient point for data augmentation
in this context. In contrast, machine learning methods
suffer performance declines as augmentation ratios rise,
potentially due to overfitting or noise from excessive
synthetic data.

V. CONCLUSION AND FUTURE WORK
This paper presents a comprehensive and detailed analysis
of data augmentation techniques in WiFi fingerprinting-based
indoor positioning, reviewing over 70 studies. It highlights
the significant role of these techniques in reducing human
labour during fingerprint dataset construction and enhancing
indoor positioning performance with synthetic data. This re-
view also proposed a novel taxonomy to categorise the most
popular and trending data augmentation methods utilised
in WiFi fingerprinting-based indoor positioning, including
traditional methods, propagation models, machine learning

(a) The relationship between generated synthetic data size and the posi-
tioning performance improvement in metres after data augmentation.

(b) The relationship between generated synthetic data size and the posi-
tioning performance improvement in percentage after data augmentation.

FIGURE 12: The correlation between post-augmentation
performance improvement and generated data sizes in WiFi
fingerprinting indoor positioning. The post-augmentation
performance is the positioning accuracy with augmented
WiFi fingerprint datasets. Performances are analysed against
different data augmentation methods, all plotted on logarith-
mic scales.

methods, deep learning methods, hybrid methods and other
methods. It was observed that GANs and traditional meth-
ods, such as interpolation, are frequently utilised as data
augmentation techniques in the literature. Furthermore, the
conversion of WiFi fingerprints into image format is a widely
adopted practice.

Additionally, we conducted a detailed analysis involving a
comprehensive performance evaluation of WiFi fingerprint-
ing data augmentation methods. We compared the indoor
positioning performances of WiFi fingerprint datasets before
and after applying different data augmentation techniques.
The relationship between positioning performance and sev-
eral factors, such as the sample size of input data for data
augmentation, the sample size of generated synthetic WiFi
data, the total number of WiFi fingerprint samples, and the
generation ratio of synthetic to input data, is examined.
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(a) The relationship between ratio of synthetic to input data and the
positioning performance improvement in metres after data augmentation.

(b) The relationship between ratio of synthetic to input data and the posi-
tioning performance improvement in percentage after data augmentation.

(c) The quadratic fit of the relationship between ratio of synthetic to input
data and the positioning performance improvement in metres after data
augmentation for deep learning and traditional methods.

FIGURE 13: The correlation between post-augmentation
performance improvement and generated-to-input data ratios
in WiFi fingerprinting. Performances are analysed against
different data augmentation methods, all plotted on loga-
rithmic scales. It is observed that traditional methods and
deep learning-based models are the most effective data
augmentation approaches for WiFi fingerprinting, while the
optimal generated-to-input ratio remains around threefold for
deep learning models.

We further explored the influence of data augmentation on
positioning accuracy improvements. We also investigated
the correlation between WiFi data samples and indoor po-
sitioning performance across various techniques, including
deep learning, traditional, propagation model, and hybrid
approaches. From the analysis, we revealed that traditional
data augmentation methods can achieve promising posi-
tioning accuracy with significant improvement compared
to original datasets. While deep learning techniques have
shown consistent advancements in enhancing indoor posi-
tioning accuracy, indiscriminately increasing data volume,
particularly surpassing the threefold generated-to-input ratio,
proves less effective. In terms of hardware and computational
resource requirements, traditional augmentation methods of-
fer promising performance improvements while operating
efficiently on standard CPUs. In contrast, deep learning-
based techniques demand significantly greater computational
resources, typically requiring high-performance GPUs to
achieve comparable gains [53]–[56].

While this review highlights significant advancements in
WiFi fingerprinting data augmentation, several promising di-
rections remain to be explored. First, developing hybrid mod-
els that effectively combine the computational efficiency of
traditional methods with the representational power of deep
learning could optimise the trade-off between augmentation
quality and resource demands. Second, enhancing adapt-
ability to dynamic indoor environments through real-time
data augmentation frameworks remains critical, particularly
for handling temporal signal variations and layout changes.
Current WiFi fingerprinting data augmentation methods rely
on pre-collected signal measurements to generate synthetic
data, which limits their ability to adapt effectively in real
time. Additionally, optimising deep learning architectures
to maintain efficiency beyond threefold data generation ra-
tios and integrating emerging WiFi signal measures (e.g.,
CSI and RTT) could further improve robustness. Finally,
establishing standardised evaluation metrics and benchmark
datasets would facilitate practical deployment, bridging the
gap between theoretical innovation and real-world applicabil-
ity. For example, researchers could either make their source
code publicly available or employ well-known public WiFi
indoor positioning datasets such as UJIIndoorLoc [6]. They
can then evaluate system performance using widely adopted
metrics such as MAE and RMSE [1]–[4]. Future research
could also explore integrating WaveFlex biosensors—known
for their flexibility, multi-parameter sensing, and wearable
compatibility—with WiFi-based systems to enrich contextual
awareness. Evaluating the feasibility of real-time augmenta-
tion represents another valuable direction for future research.

Domain generalization and adaptation represent two crit-
ical frontiers in ensuring robust performance of intelligent
WiFi indoor positioning systems within dynamic indoor en-
vironments, where factors such as lighting, layout, and occu-
pancy change over time. While these areas are foundational
to addressing distributional shifts, ”environmental changes”
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represent a distinct technological challenge—separate from
domain generalization/adaptation—that focuses on real-time
system updates to accommodate continuous, non-stationary
conditions. These are particularly valuable directions for
future work, as they offer complementary yet distinct path-
ways to achieving long-term system resilience. By priori-
tising these methodologies, researchers and practitioners
can unlock scalable solutions for more robust WiFi indoor
positioning systems.
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