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Abstract. This paper introduces a novel algorithm to enhance the reli-
ability and interpretability of Value at Risk (VaR) estimates in financial
markets, using Conformal Prediction. We address the issue of lack of
general mechanism to quantify uncertainty of VaR estimates, especially
under volatile market conditions. This is done by employing Adaptive
Conformal Inference (ACI) methodology on both synthetic and real data.
Two ACI techniques, Aggregation-based ACI (AgACI) and Dynamically-
tuned ACI (DtACI) suggested that Conformal Prediction can success-
fully construct valid predictive intervals around VaR forecasts. At 95%
confidence level, DtACI achieved consistently narrower prediction inter-
vals than AgACT across all models, with up to a 33% reduction in median
width while maintaining nominal coverage. Additionally, we demonstrate
that these intervals dynamically adapt to changes in market volatility,
widening during periods of financial stress, such as the COVID-19 crisis
and the 2022 geopolitical shocks.

Keywords: Value at Risk - Conformal Prediction - GARCH - Cop-
ulas - CAViaR.

1 Introduction

VaR is defined as a quantifiable threshold, indicating the worst expected loss
under normal market conditions at a given confidence level [4]. While it is rela-
tively simple to comprehend what it is, VAR is not straightforward to calculate.
It generally involves predicting an unknown parameter of the return distribu-
tion, providing a unique statistical challenge. In the real world, calculating VaR
on different sample sizes and different volatilities could introduce unavoidable
errors. For this reason, relying solely on point estimates could be misleading, and
one needs also to consider interval estimates around this point prediction [12].
One possible solution is to define a lower confidence bound for VaR. However,
providing a reliable prediction confidence in statistics has proven to be a signif-
icant challenge.

Thus, in this paper, we adopt a Machine Learning approach to estimate
the confidence levels of VaR. Specifically, we employ conformal prediction, a
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powerful technique which quantifies predictive uncertainty while making minimal
assumptions [15]. Notably, it offers finite-sample coverage guarantees, a highly
desirable property in any uncertainty quantification framework.

Next section presents a literature review, outlining traditional approaches
for estimating the uncertainty around VaR and highlighting their limitations.
Section 3 introduces the theoretical background of conformal prediction, with
a particular focus on its application in time series and risk estimation settings.
Section 4 provides an overview of the main empirical results obtained using both
synthetic and real-world financial data. Finally, Section 5 concludes the paper.

2 Literature Review

Usually, estimation of VaR is done on the basis of parameters that are derived
from the distribution of returns. However, it is also associated with the un-
certainty of those estimates, which can be circumvented with the construction
of confidence intervals. There are several methods of uncertainty estimation of
VaR proposed by the literature. One of those is the Delta method, which is the
mathematical approach to approximating variance [5]. Another method is the
bootstrap method, relying on repeating the sample in a simulation process to
estimate uncertainty (e.g. [2]), or a method that relies on analytical confidence
intervals constructed around the VaR, based on its asymptotic distribution [7].
Goh et al. [10] examined different methods for VaR confidence intervals. Their
findings suggest that the hypothesis testing approach yields the most reliable re-
sults, outperforming normal approximation or bootstrap method. However, one
of the key limitations of this method is that it still relies on specific distribu-
tional assumptions, which may not fully capture the complexities of the financial
market, especially during periods of extreme downturns and volatile conditions.
Hao [16] uses sophisticated predictive models to enhance the accuracy of VaR
estimates. However, they noted that these models are associated with significant
computational complexity, making them impractical for the real-time applica-
tions, while it is not clear how they perform under extreme market conditions.
Also, Contreras et al. [3] employed Bayesian confidence intervals. However, one
of the biggest weaknesses of this model is that they require strong prior as-
sumptions. Thus, while there are several methods in existence related to the
uncertainty of VaR estimates, they come with significant limitations. They usu-
ally rely on the assumption that model errors follow a normal distribution, but
this assumption is not always satisfied. Recent work has addressed confidence in-
tervals around conditional VaR, though often with methodological constraints.
He et al. [11] use a residual bootstrap under fixed-design assumptions, while
the Beutner et al. [1] paper leverages metamodeling but may struggle with tail
representation.

In addition, some of the most widely accepted models for VaR, estimation, like
GARCH or CAViaR, while effective for point prediction, lack a general frame-
work for constructing valid predictive intervals. While literature on such interval
construction exists, it is often highly model-specific, analytically complex, and
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difficult to generalize across different market regimes. When the underlying as-
sumptions of the interval prediction do not hold, these methods become highly
unreliable.

3 Conformal Prediction for Value at Risk estimations

Conformal Prediction (CP), initially developed by Vovk et al. [15], offers a princi-
pled, efficient, and flexible way to obtain predictions that guarantee a given error
rate under minimal assumptions. The basic idea of CP is to predict a label to
the given test observation based on past experience. The framework of CP rests
on the notion of nonconformity measure (NCM), a score function S(X,y) € R.
The NCM expresses how much it appears not to conform to a collection of sam-
ples. Larger scores indicate worse agreement between X and y. Typically, NCM
is designed based on the underlying point prediction model. Given a set of n
observed training data (Xi1,41), ..., (Xn,yn) and a new test point (X1, Yn+1)
which we only observed X,,;1, where (X;,1;) € RY xR fori =1,....,n + 1, and
a point prediction model [i(X), the common NCM for a regression task can be
defined as S; = |y; — 1(X;)| for the observation (X;,y;).

For any specific miscoverage rate « € (0, 1), a prediction interval produced
by the CP is

CA'cV(XnJrl) = [ﬂ(Xn+1) - Qa(s)a ﬂ(XnJrl) + qa(S)]

where ¢,(5) is defined as the [(1 — «)(n 4 1)] smallest of S = {S1,...,S,}. This
prediction set satisfies the following coverage guarantee:

P(Yny1 € Co(Xpni1) >1—a (1)

if the observed training data and the new test point are exchangeable [15]. In
other words, the true value y,; falls within the interval Cy (Xnt1) at least
100(1 — @)% of the time, averaged over all instances.

The above validity property (Equation (1)) is for any (possibly uninforma-
tive) NCM function and (possibly unknown) distribution of the data. Although
the guarantee always holds, the usefulness of the prediction sets is primarily
determined by the NCM function. Roughly, if the NCM S; correctly ranks the
inputs from lowest to highest magnitude of model error, then the resulting sets
Co(Xpn41) will be smaller for easy inputs and bigger for hard ones. If the NCMs
are bad in the sense that they do not approximate this ranking, then the sets
will be useless.

However, in the settings with many real-world time series data, where the
observed (X1,y1), ..y (Xt,9t), (Xt41,yt+1) exhibit distributional shift and tem-
poral dependence, this might violet the assumption of data exchangeability and
require the development of adaptive techniques to handle such complexities. As
a result, various studies have explored the application of CP to time series data
using randomisation, ensembles, and other meta-algorithms to produce valid
prediction sets [17, 9]. In this paper, the popular Adaptive Conformal Inference
proposed by Gibbs et al. [9] is considered.
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3.1 Adaptive Conformal Inference (ACI)

Instead of using a fixed miscoverage level at each time step, ACI can dynamically
adjust the miscoverage level a and the prediction interval width in order to
accommodate observed data and achieve the required guarantee.

At each time step ¢, ACI calculates the prediction interval Cy, (X;) according
to oy and then tries to estimate the optimal « in an online fashion by updating
Qi

Qpp1 = 0+ (a —1(Y; ¢ Co, (Xt))) ;

where v > 0 is learning rate (step size) and I is the indicator function taking the
value 1 if V; ¢ C’at (X;) and 0 otherwise. If the prediction interval fails to cover
Y:, then oy41 < oy, which increases the interval size. On the other hand, if the
prediction interval successfully covers Y;, then a;41 > a4, which shrinks the in-
terval size. This adaptive mechanism ensures that the model dynamically adjusts
to shifts in the data distribution. Thus, ACI ensures that a CP is asymptotically
valid, even if the data is not exchangeable.

The learning rate v controls the speed at which the prediction interval width
adapts to the observed data and is the primary tuning hyper-parameter.

Unfortunately, the optimal choice of v requires an in-depth knowledge of
the distribution shift a priori. Furthermore, the size of the distribution shift can
change over time, and a single fixed - value can perform poorly. Two approaches
have been developed recently to enhance ACI by removing the need for manual
tuning v, making them highly adaptive to non-stationary data distribution: On-
line Expert Aggregation on ACI by Zaffran et al. [18] and Dynamically tuned
ACI by Gibbs et al. [8].

Online Expert Aggregation for ACI (AgACI). The AgACI method of
Zaffran et al. [18] aims to learn the value of y in ACT and introduces an adaptive
expert aggregation approach. Instead of selecting a fixed learning rate v, AgACI
dynamically aggregates K multiple ACI models with different values of 7, using
an online learning framework. These parallel sequences, in convex optimization
literature, are commonly referred to as experts [8].

Dynamically tuned ACI (DtACI). To enhance ACI, Dynamically-Tuned
Adaptive Conformal Inference (DtACT). considers the ACI update as a gradi-
ent descent step concerning the pinball loss [8]. This method introduces a self-
adjusting mechanism for the learning rate «y. Similarly to AgACI, DtACI selects
the optimal + by leveraging an online expert aggregation approach. However,
DtACI tends to be more dynamic, as it continuously updates K expert weights
using an exponential re-weighting mechanism based on the historical perfor-
mance of a set of candidate values, thus, allowing it to adapt more quickly to
distribution shifts and abrupt changes in the data distribution, which is often
observed in the case of financial data.

3.2 Application of ACI for Value at Risk

Value at Risk, as a measure of the downside risk of an asset or portfolio at a
certain confidence level, has certain peculiarities that require some adjustment
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to this methodology. Namely, first of all, in order to properly measure the down-
side risk and nonconformity to the measure of VaR, the adjusted quantile score
function was used as nonconformity score, as below [14]:

S(ai(@); yr) = (@ = Ly: < qi(@)))(ye — qe()) (2)

where ¢;(«) represents the quantile forecast at probability level « (in this
case, it represents the modeled VaR), y; represents the realized value at time
t, S(g:(),yt) is the quantile scoring function, which measures the accuracy
of the quantile estimate ¢;(«), and I(y; < gq:(«)) is the indicator function,
taking the value 1 if y; < g;(«) and 0 otherwise. That is, this function determines
whether the observed value y; falls below the predicted quantile g ().

In summary, Equation (2) could be divided into the following two terms:

— The term (o — I(y; < ¢:(0))) acts as a weight, assigning different penalties
depending on whether the observation is below or above the quantile forecast.
For the violations, it assigns the value of 0.95, while for nonviolations, it
assigns the values of 0.05, in case of a=5% VaR.

— The term (y; — g:(a)) measures the difference between the actual and pre-
dicted values, ensuring that the score reflects the magnitude of any prediction
error.

Having in mind that we are interested only in the downside risk, this equation
is modified to capture only violations with the weight of 1 (leaving out the non-
violation returns). Thus, with an attempt to isolate the violations, the above
scoring function is modified to be:

S*(qe(a)sye) = (L(ye < @(a))) (e — qe(e))
This modification allows us to have more interpretable results (e.g. the ACI
captures the downside volatility at certain confidence level), and to easily track

the quality of the VaR estimates. Consequently, the bounds for the final predic-
tion interval is constructed as:

éACI,t = [Qt(a) - Lt(a)ﬂ]t(a)]

where L(«) represents the width for the lower bound constructed at time ¢.

4 Empirical Results

This section presents the results of adopting CP on the synthetic data and a
real-world data to calculate VaR.
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4.1 Synthetic Data

Synthetic return series are generated using a GARCH(1,1)-style model®. We
consider three models: GARCH (1,1), Historical VaR, (which estimates the values
of 5% quantile in the rolling window), and Trivial VaR (which calculates the 5%
quantile from an initial period and uses it as a constant VaR estimate, and their
results are shown in Table 1.

While none of these models are perfect, GARCH(1,1) model seems to satisfy
the main backtests (Kupiec test and Christoffersen test for independence) in all
market regimes. Trivial VaR satisfies these tests for the baseline model, Mean-
Reverting markets and Highly Volatilite markets; while at 5% significance level,
Historical model satisfies the tests only for Mean-Reverting simulations. Thus,
during the modelling of VaR in a Mean-Reverting market, one cannot sufficiently
justify using the GARCH(1,1) model, only based on the results of conventional
backtesting procedures.

Table 1: Violation Rates and Backtesting p-values for Different Market Condi-
tions. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01

Baseline Model GARCH Model Historical Trivial
Violation rates (%) 5.25 5.50 5.75

Kupiec test p-value 0.6107 0.3123 0.1324
Christoffersen test p-value 0.8143 0.0220*%*  0.5790

Mean-Reverting Markets

Violation rates (%) 5.30 5.30 5.80
Kupiec test p-value 0.5419 0.5419 0.1090
Christoffersen test p-value 0.7785 0.0754* 0.6130

Highly Volatile Markets

Violation rates (%) 5.35 5.65 5.60
Kupiec test p-value 0.4774 0.1909 0.2267
Christoffersen test p-value 0.5858 0.0334**  0.2758

Extreme Volatility Clustering

Violation rates (%) 5.40 5.95 6.25
Kupiec test p-value 0.4175 0.0581* 0.0134**
Christoffersen test p-value 0.6199 0.0132%* 0.0134**

This issue may be exaggerated in real-world settings, in a case all models sat-
isfy the backtests. CP provides a solution in the form of a guarantee of volatility
coverage. As it can be seen from the graphs in Figure 1, GARCH(1,1) model

3 Synthetic return series are generated using a GARCH(1,1)-style model with optional leverage and
jump components, where volatility evolves dynamically based on past returns and past volatility.
By adjusting the parameters—omega (baseline variance), alpha (shock sensitivity), beta (volatil-
ity persistence), and a leverage term (asymmetric impact of negative returns)—different market
regimes are simulated, from smooth, mean-reverting behavior to extreme volatility clustering and
crisis-like dynamics.



Reliable Value at Risk Estimations with Conformal Prediction 7

(green line), which is theoretically expected to outperform other models, has
narrower intervals, suggesting higher certainty in its predictions, in all market
regimes.

L e L egegm——

(d) High Clustering (h) High Clustering

Fig. 1: AgACI (left) and DtACI (right) downside interval width in different mar-
ket regimes.

4.2 Real-world Data

This section presents the main results of the research based on real-world data.
It consists of daily returns on 24 fixed-income assets derived from Bloomberg.*

4 The portfolio includes the following bonds: ACAFP 3.125% 02/05/2026 REGS Corp; BAC
4.25% 12/10/2026 REGS Corp; BAC 5.875% 02/07/2042 Corp; BAC 7.00% 07/31/2028 REGS
Corp; C 2.8% 06/25/2027 Corp; C 3.0% 06/26/2037 Corp; C 3.1% 06/26/2047 Corp; C 4.95%
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All bonds used for the portfolio are senior, plain vanilla bonds with longer matu-
rities. The starting date of the dataset is January 2014, with the end date being
October 2024. Thus, all bonds have maturities of more than 10 years. These are
corporate/financial bonds issued in the United States, Great Britain, France,
and Italy, in (currency) USD, GBP, EUR, and JPY, respectively.

In this paper, three main methods for estimating Value at Risk have been
conducted, CAViaR method (first proposed by Engle and Manganelli [6]), Dy-
namic Conditional Correlation GARCH model, and Copula model. The main
results of these models are presented in Table 2 below, while the process of es-
timation is described in Appendices I-III. It can be seen from the table that all
models are somewhat accurate in predicting VaR (based on Kupiec test) and
that the VaR violations are independent at a 5% significance level (based on
Christoffersen test). The plots of the models with returns, estimated VaR values
and violations for all three models are presented in Figure 2. This particular
estimation period consists of different market regimes, moderate to high volatil-
ity period (up to 2017), relatively stable period (2017 to 2020), period of big
shocks on the market (COVID-19 crisis during 2020), and period of high volatil-
ity on the financial markets (period after 2022, that could be linked to the war
in Ukraine).

Table 2: Comparison of Risk Model Performance and 95% Conformal Interval
Widths.

Metric CAViaR GARCH Copula

Backtesting Results

Violation Rate (at 5%)  4.98% 5.02%  4.85%
Kupiec t-statistic 0.0019 0.0019 0.0579
Kupiec p-value 0.9654 0.9654  0.8099
Christoffersen t-statistic 1.2497 0.6707  3.6838
Christoffersen p-value 0.2636 0.4128  0.0549

AgACI Interval Width (95% Confidence)

Average Width 1.0266 1.2413 1.2682
Minimum Width 0.8319 0.8457 0.7424
Maximum Width 1.2258 1.5290 1.5361
Median Width 0.8613 1.2960 1.3490
DtACI Interval Width (95% Confidence)
Average Width 0.8311 0.9169 1.1391
Minimum Width 0.4819 0.4268  0.5162
Maximum Width 2.3968 3.5396  6.4531
Median Width 0.7456 0.7782  0.9652
AgACI vs DtACI Width Ratio

Avg. Width Ratio 1.2352 1.3538 1.1133
Median Width Ratio 1.1552 1.6654 1.3976

11/07/2043 Corp; C 5.15% 05/21/2026 REGS Corp; C 5.875% 01/30/2042 Corp; C 6.8%
06/25/2038 REGS Corp; C 7.375% 09/01/2039 REGS Corp; C 8.125% 07/15/2039 Corp;
GS 6.25% 02/01/2041 Corp; ISPIM 0.00% 01/08/2027 Corp; JPM 2.875% 05/24/2028 REGS
Corp; JPM 3.5% 12/18/2026 REGS Corp; JPM 5.4% 01/06/2042 Corp; JPM 6.4% 05/15/2038
Corp; LLOYDS 6.5% 09/17/2040 REGS Corp; MS 6.375% 07/24/2042 Corp; STANLN 4.375%
01/18/2038 REGS Corp; WFC 3.5% 09/12/2029 REGS Corp; WFC 4.625% 11/02/2035 Corp.
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(c) Copulas VaR estimates with Violations.

Fig. 2: Comparison of Models: GARCH, CAViaR, and Copulas.

Values for VaR, obtained using the three methodologies, are used to estimate
conformal intervals with the AgACI and DtACI methods. They derived some-
what similar results, though, as it can be observed from the plots below (see
Figure 3), the DtACI methodology has consistently narrower intervals at each
confidence level. This is achieved while at the same time preserving the guaran-
teed coverage, which is suggested by the DtACI violation rates plot. Moreover,
it can be seen from Figure 3 that the models performed very similarly at most
confidence levels. Namely, the only significant difference seems to be at higher
confidence levels for DtACI, where GARCH and CAViaR models outperform
Copula VaR.

It might also be valuable to observe how the confidence intervals behave
during the time, which is presented for DtACI methodology in Figure 4 below.



10 Ivancevic et al.
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(a) AgACI downside width comparison (b) DtACI downside width comparison

w
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(c) AgACI violation rates (d) DtACI violation rates

Fig. 3: Results for AgACI and DtACI.

Namely, at this figure, the 40% and 95% confidence intervals are presented. What
can be observed is that all of these methods are deriving similar behaviour at the
same confidence levels and at the same time. Namely, during the highly volatile
times, at the beginning of 2020 (COVID-19 crisis) and after 2022 (the Ukranian
war), there is an obvious and substantial increase in interval widths for all of
these methods. This seems to be the definite result of increased volatility on the
markets, and, as a result, potentially higher instability of models projections.
However, what can be observed is that, surprisingly, the Copula method (which
should excel during the time of severe economic downturn) and the GARCH
model have higher interval widths at these periods.

e PrLW%WWMWMWMWWWWWWWWMMWWWWWM%w

Fig. 4: DtACT lower bound widths at 40% and 95% confidence level.



5 Conclusions

This research utilized the Adaptive Conformal Inference (ACT), more specifically
AgACI and DtACI methodologies for constructing confidence intervals around
Value at Risk (VaR) estimates. Our proposed methods, AgACI and DtACI,
successfully constructed valid intervals around VaR, while at the same time
preserving finite-sample coverage guarantees. However, there were some notable
differences between the two methods. Dt ACI seems to exhibit superior adaptabil-
ity and consistently generates narrower intervals, not at the expense of coverage
guarantee. This was particularly notable at higher confidence levels, with some
models having as much as 35% narrower intervals on average.

In summary, while both AgACI and DtACI proved effective, these findings
suggest that DtACI may be better suited for financial risk estimation, especially
during periods of frequent distributional shifts. The model’s inherited ability
to dynamically adjust expert weights and optimize parameters enables it to
be more responsive to market stress. Thus, combing VaR estimation models
with DtACI presents a promising avenue for research and improving overall
risk management risk metrics. This arises from ACI’s ability to provide reliable
confidence intervals, which in turn can enhance decision-making, especially under
uncertain market conditions.

Furthermore, the results, to some extent, reinforce findings from prior litera-
ture, particularly related to the limitations of traditional backtesting methods for
VaR evaluation. As noted by Christoffersen et al. [2], while statistical backtests
such as Kupiec and Christoffersen tests can confirm the adequacy of coverage
and independence under stable conditions, they may fall short in fully assessing
the predictive quality during periods of significant regime market shifts. In this
context, CP methodology may serve as a more flexible and data-driven mecha-
nism that will extend the traditional risk evaluation framework.

These findings support the view that conformal prediction improves the prac-
tical relevance of risk metrics in finance. More specifically, the ability of confor-
mal intervals to dynamically adapt to changing market conditions while not
making strong distributional assumptions about the underlying returns offers
a distinct advantage over classical confidence levels VaR estimation techniques,
which often rely on strong assumptions.

Overall, it seems that the integration of conformal prediction into financial
risk modeling aligns with the ongoing shift toward more transparent, distribution-
agnostic, and adaptive tools in quantitative finance. This is especially relevant
in light of recent market events that have challenged the assumptions of many
traditional models for estimation of risk, further motivating the need for method-
ologies that can retain statistical validity while adapting to non-stationary dy-
namics. However, it is important to note that this study, due to the nature of the
non-conformity score, provides only downside volatility guarantee. This could be
considered both as a strength, from the risk management perspective, and a lim-
itation, from the perspective of generalisability and broader use. Hence, future
research into this area could investigate the use of alternative non-conformity
scores, depending on the purpose of the research.
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Appendix I CAViaR Model

One of the models use in a process of VaR modeling is CAViaR (the Conditional
Autoregressive Value at Risk) proposed by [6]. This model directly estimates
quantile instead of assuming specific parametric distribution. As such, it utilizes
quantile regression technique to determine the evolution of VaR over time. The
process is summarized in the following steps below.

Using the notation from the article of [6] let y; be the portfolio returns at
time ¢, and VaR; represent the estimated Value at Risk. Hence, we have the
probability that the return will fall below VaR, at a given confidence level 8 as:

P(yt < _VaRt|.Ft71) = 0,

where F;_1 denotes the information set available at time ¢ — 1.
The general specification of the Asymmetric Slope CAViaR model is:

VaR; = By + B2VaR;—1 + Pz max(ys—1,0) + B4 min(y;—1,0),

where:

— [ represents the intercept term,

— (9 captures the persistence of VaR,

— (B3 models the impact of positive returns, and
— (B4 models the impact of negative returns.

If we have a sample of observations y1,¥s, ..., yr generated by the model:

yr = 2400 + €ot,  where Quanty(ege|z) = 0.

where z; is a p-dimensional vector of regressors, and Quant,(eq¢|z+) represents
the conditional #-quantile of e9; conditional on z;. Then, the parameters of
the model By, B2, B3, B4 are estimated by minimizing the quantile loss function,
introduced by Koanker and Bassett [13] as:

T

min 7 310~ 1y < Si()] I~ Fo(5)

t=1

where:
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= fit(B) = 2.

yr is the portfolio return at time ¢.

— 0 is the quantile (0.05 for a 5% quantile/VaR).

I(y: < f1(B)) is an indicator function that takes the value 1 if y; is less than
VaR; and 0 otherwise.

Appendix II Dynamic Conditional Correlation GARCH
(DCC-GARCH) Model

Univariate GARCH(p,q) Model

Fach asset is modelled with generalised autoregressive conditional heteroscedas-
ticity, GARCH (p,q) model as (tested for best model based on AIC and BIC
criteria up to p=4 and q=4):

2 _ 2 2
o =wtar;_y;+ 80,

where 7, ; is return of asset ¢ at time ¢, 015271- is conditional variance of r; ;, and
w, a, B are model parameters.

Dynamic Conditional Correlation (DCC) Model

The dynamic conditional covariance matrix is estimated as:

Q=01-a-b)Q+ aft—lﬁtT_1 +bQ¢—1
where:

— @y: Time-varying covariance matrix,

— @: Unconditional covariance matrix of standardized residuals,
— ¢;_1: Standardized residuals from the GARCH model,

— a,b: DCC parameters.

Which is then converted to a time-varying correlation matrix as:
R, = diag(Q,) " '/2Q,diag(Qy)~'/?

Time-Varying Covariance Matrix
The conditional covariance matrix is calculated as:

Hy = DR Dy

where D, is a diagonal matrix of conditional volatilities.

Value-at-Risk (VaR)

To estimate VaR at confidence level o, a Monte Carlo simulation with 10,000
scenarios is conducted, deriving with the standard normal returns Z;. These
samples are transformed using the estimated covariance matrix H; to obtain
simulated portfolio returns:

rfim = wTL\/EZt
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where L is the Cholesky decomposition matrix of H;.
Subsequently, the empirical quantile of the simulated portfolio returns is
computed to estimate VaR:

VaR, ; = Quantile, (r5™)

This approach is, thus, a data-driven and distribution-free estimation of VaR,
capturing non-linear dependencies and fat-tailed behavior in returns.

Appendix III Copulas Modelling for Value-at-Risk

This section outlines the Copula-based approach used in the study. The overall
process involves fitting GARCH models to individual assets, transforming residu-
als into a uniform space, estimating a Student-t Copula, generating Monte Carlo
simulations, and computing portfolio VaR.

Fit Marginal Distributions

Before applying the Copula, the volatility of each asset is modeled using a
GARCH process, similar as in the previous segment.

From this, standardized residuals are obtained:

Tt — M

Zti =
Ot

where p is the mean return and oy ; is the conditional volatility.

And transformed into a uniform distribution [0, 1] using the cumulative dis-
tribution function (CDF) of the Student-t distribution Uy ; = Fi(2:;), where F}
is the Student-t CDF.

Fit the Student t Copula

The dependence structure between assets is modeled using the Student-t Cop-
ula, as suggested by the literature regarding the financial returns: The Copula
captures dependencies by estimating:

— The correlation matrix of the transformed residuals,
— The degrees of freedom parameter for tail dependence.

The dynamic correlation structure follows Q; = (1 —a—b)Q +ae;_1€¢,_ 1 +bQ;_1
where @, is the time-varying correlation matrix and @ is the unconditional
correlation matrix.

Monte Carlo Sampling from the Copula

Using the fitted Copula, synthetic asset returns are generated using 10,000

Monte Carlo simulations. The process involves:

— Generating correlated uniform samples U, ; from the Student-t copula.
— Transforming uniform samples into Student-t distributed residuals:

Z

tsim = T
vV Xae/df



