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Abstract
With the proliferation of increasingly complicated Deep Learning architectures, data syn-
thesis is a highly promising technique to address the demand of data-hungry models. How-
ever, reliably assessing the quality of a ‘synthesiser’ model’s output is an open research 
question with significant associated risks for high-stake domains. To address this chal-
lenge, we propose a unique synthesis algorithm that generates data from high-confidence 
feature space regions based on the Conformal Prediction framework. We support our pro-
posed algorithm with a comprehensive exploration of the core parameter’s influence, an in-
depth discussion of practical advice, and an extensive empirical evaluation of five bench-
mark datasets. To show our approach’s versatility on ubiquitous real-world challenges, the 
datasets were carefully selected for their variety of difficult characteristics: low sample 
count, class imbalance, and non-separability. In all trials, training sets extended with our 
confident synthesised data performed at least as well as the original set and frequently sig-
nificantly improved Deep Learning performance by up to 61% points F

1
-score.
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1  Introduction

Specialised and data-hungry Deep Learning implementations are increasingly faced 
with small and unrepresentative datasets, a well-established challenge in the litera-
ture (Brigato & Iocchi, 2021; Moreno-Barea et al., 2020; Sarker, 2021). Unfortunately, 
increasing the sample size by collecting more data is challenging in many real-world 
applications. Prohibitors include high data collection costs, low data availability, and 
the lack of expertise in ground-truth labelling.

Data synthesis is a highly sophisticated approach to combat small datasets. Improv-
ing on techniques that modify and remix existing samples (e.g., data resampling, ran-
domisation, and augmentation), data synthesis generates entirely new and unseen 
examples based on the original data (Zhuang et  al., 2019). Similarly to classification, 
synthesis relies on accurately modelling the data’s distribution to extrapolate plausible 
new feature vectors (Liu et al., 2022). In Deep Learning, these synthesised samples may 
be included in the training set to improve model generalisation and, consequently, pre-
diction performance.

Generative Adversarial Networks (GANs) are a state-of-the-art synthesis technique, 
leveraging a zero-sum game between a Deep Learning generator and discriminator to 
synthesise realistic samples (Aggarwal et  al., 2021). However, a major challenge and 
open research question shared among most existing data synthesis techniques is how to 
quantify the produced synthetic data’s quality. Evaluating a generator model’s distribu-
tional fit is fundamentally difficult because there is no inherent quality metric for previ-
ously unseen data (Grnarova et al., 2019).

To address this challenge, we have designed a unique confident data synthesis algo-
rithm based on a novel extension of the Conformal Prediction framework (Shafer & 
Vovk, 2008). Inspired by Cherubin et  al.’s innovative conformal clustering paper 
(Cherubin et al., 2015), we rely on the confidence of feature space regions to guide our 
data generation. Figure 1 illustrates the effect of our confidence estimation approach on 
the feature space compared to traditional density estimation. Section 1.1 details our con-
tributions in more depth and describes the article’s structure.

Fig. 1   Visualisation of two techniques to identify feature space regions based on the original samples 
(a) from which data is synthesised. Compared to traditional density estimation of the samples (c), our pro-
posed algorithm determines conformal high-confidence regions based on a user-selected threshold (b). The 
lower the threshold, the wider the confidence regions become from which samples are synthesised
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1.1 � Contributions

In this article, we propose conformal data synthesis to significantly improve Deep 
Learning prediction performance on small and imbalanced datasets. Our algorithm 
builds on Conformal Prediction, a foundational confidence framework founded on 
hypothesis testing. To the best of our knowledge, this is the first extension of Conformal 
Prediction to data generation.

Inspired by the innovative conformal clustering work presented in Cherubin et  al. 
(2015), our algorithm relies on the confidence of feature space regions to synthesise 
new data points. Our three key contributions are:

•	 We incorporate ground-truth labels, making the confidence modelling process 
supervised,

•	 We identify label-conditional confidence regions in the feature space,
•	 And, most decisively, the confidence regions are an intermediate stage from which 

we synthesise new data points.

In the following sections, we will discuss the context and motivation of our data synthe-
sis solution (Sect. 2); Present its theoretical foundation and inspiration (Sect. 3); Intro-
duce our proposed synthesis algorithm (Sect. 4); Systematically evaluate the empirical 
advantages on real-world datasets of varying difficulty (Sect. 5); And discuss practical 
advice and future directions of the proposed algorithm (Sect. 6).

2 � Related work in data synthesis

A model’s performance is strongly dependent on its underlying data. Consequently, 
state-of-the-art Deep Learning models are frequently trained on vast datasets to optimise 
prediction performances. Although a large sample count is not necessarily required for 
high performance, it increases the likelihood of a representative collection of samples 
(Althnian et  al., 2021). Unfortunately, real-world applications frequently suffer under 
small and unrepresentative datasets due to the shortage of high-quality annotated sam-
ples (Alauthman et al., 2023). However, artificially extended datasets have been shown 
to improve results. Data synthesis is the most sophisticated approach to extend datasets 
with entirely new data. The core concept is to generate previously unseen data points 
from the existing data automatically. The most popular use cases are to improve model 
inference with synthetic samples (Muramatsu et al., 2020; Salazar et al., 2021; Koshino 
et al., 2021) and to replace a dataset with synthetic samples (Li et al., 2020; Yoon et al., 
2020; Thambawita et  al., 2021). The former is achieved by extending the training set 
with new samples in keeping with the original data to support model learning.

In more detail, a successfully trained classification model h� will have learned a close 
distribution estimation of the classes Y in the feature space X , P(Y|X) (Bashir et  al., 
2020). In other words, it will map latent variable relationships, and therefore certain 
feature space regions, to a particular class y ∈ Y:

(1)h�(X) ≈ Y.
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The more densely a class y is represented in a region during training, the more it will be 
reinforced in the model’s feature space representation. However, if there are too few train-
ing samples, the model is underfit and will have learned a skewed representation of the 
dataset (Bejani & Ghatee, 2021). Unfortunately, collecting more data to increase the sam-
ple size is difficult in many real-world situations. Prohibitors include the high data collec-
tion cost, low data availability, and lack of expertise for ground-truth labelling (Whang 
et al., 2023).

GANs are the most popular and ubiquitous synthesis technique to address this concern. 
Developed by Goodfellow et  al. they encapsulate a zero-sum game between two models 
(Goodfellow et al., 2020). The generator attempts to fool the discriminator with new sam-
ples synthesised from random noise. Simultaneously, the discriminator attempts to dis-
tinguish between original and generated samples. Over many training iterations, the gen-
erator’s output becomes more and more realistic (Kammoun et  al., 2022). However, the 
final synthesised output is fundamentally difficult to evaluate because there is no inherent 
quality metric for the GAN’s distributional fit (Borji, 2022; Navidan et al., 2021; Brophy 
et al., 2023). We must rely on purely qualitative metrics and empirical results to estimate 
the samples’ quality, which may be problematic for high-risk domains such as healthcare, 
finance, and security (Saxena & Cao, 2022).

Nonetheless, multiple approaches have been developed that show improved perfor-
mance with empirical confidence measures. For example, Bhattarai et  al. interpreted the 
probabilistic output of the GAN’s generator and discriminator as a confidence measure 
(Bhattarai et al., 2020). Based on this information, the synthetic samples were filtered for 
high scores, and empirical results for facial emotion recognition showed minor improve-
ments. Similarly, Nie and Shen developed a difficulty-aware attention mechanism based on 
the model’s confidence for medical image segmentation (Nie & Shen, 2020). They aimed 
to improve overall performance by reducing the training weights of easy samples based on 
a ‘confidence’ Convolutional Neural Network (CNN). The authors estimated the trustwor-
thiness of image segments with the CNN’s confidence maps and thereby took local con-
fidence into account. In contrast, Du et al. developed a sophisticated confidence model to 
generate pseudo-healthy images of skin lesions (Du et al., 2022). Using a GAN, the authors 
generated subject-specific healthy images paired with a pathological sample to support 
classification performance. As part of the framework, they included a confidence check 
such that only segments with a confidence greater than a pre-defined threshold were con-
sidered for prediction. More recent works combine evaluation metrics to quantify different 
desirable characteristics that a well-fitted GAN should portray. For example, Abdusalomov 
et al. evaluated the synthesised samples in two stages: their distributional similarity to the 
original data during training and their diversity and proximity to real images of different 
classes after training is complete (Abdusalomov et al., 2023). While each of these exam-
ples improved prediction performance on specific datasets and tasks, there were no quality 
guarantees since the confidence measures were empirically derived from probabilistic neu-
ral network outputs.

There is no question that GANs can be a powerful synthesis technique (Wang et  al., 
2023; Shi et al., 2023; Zhao & Bilen, 2022). Unfortunately, however, they can be notori-
ously difficult to train. In particular, they frequently inherit the Deep Learning requirement 
for relatively large and balanced datasets to enable strong generalisation (Huang & Jafari, 
2023). Consequently, density-based generative models are a popular alternative for small 
datasets requiring extension (Plesovskaya & Ivanov, 2021). For example, Kernel Density 
Estimation (KDE) is a state-of-the-art non-parametric approach to approximate the dis-
tribution of random variables (Park & Pardalos, 2024). Part of KDE’s versatility is the 
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underlying kernel K, which may be defined to suit the underlying data (Bauer et al., 2024). 
Consequently, using n observations xi , a random variable x’s probability density estimation 
p(x) is defined as:

The bandwidth w acts as a smoothing parameter, regulating the estimation’s bias-variance 
trade-off (Belhaj, 2024). The fitted KDE model may be repeatedly sampled to synthesise 
new data points. For example, Pozi et  al. developed a privacy-preserving data synthesis 
algorithm building on this technique (Pozi & Omar, 2020). After learning the probability 
density function of the original features with a KDE-based generative model, the distri-
bution is carefully and deliberately shifted to obscure personally identifiable information. 
Through extensive classification experiments, the authors found that the shifted data’s util-
ity remained equal to the original data, maintaining downstream prediction performances.

Similar to GANs, empirical evaluations are a common occurrence for density-based 
generative models because they offer no inherent performance guarantees. Additionally, 
synthesis performance may be highly variable depending on the underlying data and user-
selected parameters (e.g., the bandwidth) (Falxa et al., 2023). In contrast, theoretically sup-
ported confidence frameworks such as Conformal Prediction have an enormous potential to 
increase trust in synthesised data. However, to the best of our knowledge, Conformal Pre-
diction has not previously been utilised for data synthesis. Apart from conformal cluster-
ing (discussed in Sect. 3.2), the closest related work is presented by Liu et al. The authors 
proposed the conformal framework for semi-supervised learning (Liu et  al., 2021). In 
particular, Inductive Conformal Prediction was used to measure the quality of augmented 
samples. As a first step, the highest-confidence original samples were pre-filtered for aug-
mentation. After augmentation, the highest-credibility adjusted samples were retained to 
extend the training dataset. The proposal was tested on a small dataset for herbal medicine 
classification, and the resulting prediction performance improved on traditional augmenta-
tion techniques. The downside was the high computational inefficiency of the approach, 
which was further improved in Liu et al. (2022). As the foundation of our confident synthe-
sis proposal, Sect. 3 further discusses the Conformal Prediction confidence framework in 
more depth.

3 � Conformal Prediction background

How confident are we that a model’s prediction is correct? This is the core question that 
uncertainty quantification techniques such as Conformal Prediction attempt to answer. 
To contextualise our conformal synthesis proposal (Sect. 4), we introduce the conformal 
framework for classification (Sect. 3.1) and summarise the conformal clustering work that 
inspired our approach (Sect. 3.2).

3.1 � The conformal framework

Conformal Prediction (CP) is a highly versatile confidence framework that acts as a wrapper to 
any underlying point prediction model (Zhang et al., 2021). Based on hypothesis testing, CP’s 
uncertainty measures for individual predictions are statistically supported to a user-selected 

(2)p(x) =
1

n

n∑

i=1

K(x − xi,w).
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significance level. This section focuses on conformal classification because of its relevance to 
the proposed synthesis algorithm. Interested readers are referred to Johansson et al. (2014) for 
conformal regression.

Under minimal exchangeability assumptions, the conformal validity property guarantees 
that prediction mistakes are made up to a maximum error rate (Angelopoulos et al., 2020). To 
achieve this strong guarantee, an underlying model’s point predictions are transformed into 
a prediction set Γ including all plausible labels y ∈ Y . Label inclusion is driven by the sig-
nificance-level � , making the prediction sets �-dependent (Messoudi et al., 2020). An error is 
defined as a prediction set missing a sample’s true label y∗ . Due to the hypothesis testing back-
ground, the probability of a mistake being made on each sample i is capped at � , subject to 
statistical fluctuations (Eq. 3). By the law of large numbers, the overall probability of an error 
occurring approaches � with increasing predictions, while the individual error probability is 
unchanged (Zhan et al., 2020):

Originally designed for an online setting, transductive CP requires retraining the conformal 
model for every new test sample. Therefore, an inductive variant (ICP) was proposed to 
remove the need for leave-one-out retraining (Papadopoulos, 2008). However, similar to 
the original approach, the guarantees are valid over all predictions but not necessarily per 
class. For example, ‘difficult’ samples belonging to a minority class may average higher 
error rates than ‘easier’ samples (Ashby et  al., 2022). Therefore, the Mondrian variant 
(MICP) builds on ICP to address this challenge by extending the guarantees to label-condi-
tional validity (Löfström et al., 2015):

Due to its unique combination of advantages, the following section describes the MICP 
method of prediction set construction.

The strong validity property is guaranteed through carefully constructing the prediction 
sets Γ� . To prepare for inductive inference, we split the original training set Ztrain with samples 
x ∈ X and true labels y∗ ∈ Y into the disjoint proper training set Zprop and calibration set Zcalib
:

To make a prediction, a test sample xn+1 ’s plausibility is evaluated through extension with 
each possible label y ∈ Y (Meister et al., 2023). To measure the likelihood of the postu-
lated label given the original data, a non-conformity measure A evaluates a test extension’s 
‘strangeness’ with an underlying point prediction model U trained on Zprop:

(3)P
(
y∗
i
∉ Γ�

i

)
≤ �,

(4)lim
i→∞

avg P
(
y∗
i
∉ Γ�

i

)
≈ �.

(5)P(y∗ ∉ Γ� ∣ y∗ = y) ≈ �, ∀ y ∈ Y.

(6)Ztrain = {i = 1,… , n|
(
xi, y

∗
i

)
},

(7)Zprop = {i = 1,… ,m|
(
xi, y

∗
i

)
},

(8)Zcalib = {i = m + 1,… , n|
(
xi, y

∗
i

)
}.

(9)�
y

n+1
= AU

(
(xn+1, y), Zprop

)
, ∀ y ∈ Y.
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The calibration non-conformity scores are calculated similarly to the test sample’s. How-
ever, instead of extending each calibration point with every possible label, we only require 
values for their true labels y∗:

An example of a straightforward non-conformity measure uses the K-Nearest Neighbour 
algorithm (KNN) as its underlying model:

Here, � quantifies an extended sample xj ’s similarity to the observed data by summing the 
distances to its k nearest neighbours with the same true label y∗ as the postulated class y. 
The larger � is, the further away the test sample x is from a class y, and the less likely it is 
that y is a plausible label (Ndiaye, 2022).

Given a test sample’s and the calibration set’s non-conformity scores, we may calculate 
the probability of each label y being the true test label y∗

n+1
 via p values (Meister, 2020). 

Note that through the hypothesis testing background, all true p values py∗ are automatically 
guaranteed to be uniformly distributed (Sesia & Romano, 2021):

Finally, the prediction set Γ�
n+1

 is constructed by including all labels y whose confidence 
levels exceed the significance level �:

The larger � is, the narrower the prediction set becomes, and the more likely it is that a 
sample’s true label y∗ is not included. Therefore, the trade-off between low error rates and 
precise prediction sets must be carefully balanced. The optimal classification prediction set 
includes exactly one label (Vovk et al., 2016). So far, Conformal Prediction has been pre-
sented in the context of prediction tasks. Section 3.2 discusses an extension to clustering 
that inspired our proposed algorithm.

3.2 � Conformal clustering

Conformal Prediction was originally developed to measure confidence and provide perfor-
mance guarantees for prediction tasks. However, the framework has since been extended to 
a variety of application domains, and the one most relevant to this article is unsupervised 
clustering.

Introduced in Cherubin et al. (2015), conformal clustering is founded on measuring the 
conformal confidence of each point in a feature space. A grid of points represented the 
feature space with equal spacing to make the task discrete. By treating each grid point as a 
test sample, Cherubin et al. measured their unsupervised similarity to the observed training 
data with conformal p values (Sect. 3.1). All grid points with p > 𝜖 were considered part 
of the clusters, where � was a user-specified threshold between 0 and 1. The clusters them-
selves were defined via the neighbouring rule: two grid points were part of the same cluster 
if they were neighbours. Therefore, in addition to setting the confidence threshold, � may 

(10)�
y∗

i
= AU

(
(xi, y

∗
i
), Zprop

)
, ∀ (xi, y

∗
i
) ∈ Zcalib.

(11)AKNN ∶ �
y

j
=
∑

min
k

dist
(
xj, {xi ∈ Zprop|y∗i = y}

)
.

(12)p
y

n+1
=

#{i = m + 1,… , n|y∗
i
= y, �

y∗

i
≥ �

y

n+1
} + 1

#{i = m + 1,… , n|y∗
i
= y} + 1

.

(13)Γ𝜖

n+1
= {y ∈ Y|py

n+1
> 𝜖}.
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be considered a regularisation factor of the clusters’ connectedness. The smaller � was, the 
more connected the high-confidence grid points were, and the fewer distinct clusters were 
formed.

Building on this work, Nouretdinov et  al. further underpinned the understanding of 
conformal clustering (Nouretdinov et  al., 2020). The authors extended the approach to 
develop multi-level conformal clustering, introducing a dendrogram construction similar 
to traditional hierarchical clustering methods. Additionally, a new technique for identifying 
out-of-distribution anomalies was established by testing whether new samples fell within 
a conformal cluster. More recently, Jung et al. developed a novel conformity measure for 
clustering that is applicable to circular variables (Jung et al., 2021). The authors demon-
strated their approach by performing clustering on a dataset containing torsion measure-
ments of different proteins.

In a further recent development, Ding et al. proposed Clustered Conformal Prediction 
to incorporate a clustering aspect into conformal classifiers to improve class-conditional 
coverage in the many-class scenario (Ding et al., 2023). The authors cluster classes with 
similar conformal score distributions based on the Mondrian CP variant. Calibration is 
then carried out within each cluster, achieving stronger ‘cluster-conditional’ coverage over 
marginal coverage. However, for the purpose of our proposed synthesis algorithm, the pre-
viously mentioned conformal clustering concept of measuring feature space confidence is 
particularly interesting. For a successful synthesis, we would expect the new samples to 
overlap with the original data in the feature space. By limiting synthesis to high-confidence 
regions, outliers should be minimised. With this inspiration, Sect.  4 introduces our pro-
posed confident data synthesis algorithm.

4 � Conformalised data synthesis

In this section, we propose a unique data synthesis algorithm that measures the feature 
space confidence during the generation process. The basis of our confidence measure is 
the foundational Conformal Prediction framework, traditionally used for prediction and 
distribution testing tasks (Sect. 3). Our work presents a novel extension of the conformal 
technique to data generation, a previously unexplored domain. After examining our pro-
posal’s implications for the synthesised data (Sect. 4.1), we comprehensively discuss our 
algorithm’s design and characteristics (Sect. 4.2).

4.1 � Implications for data generation

Inspired by the innovative conformal clustering work summarised in Sect. 3.2, our novel 
conformal data synthesis algorithm relies on the confidence of feature space regions to 
generate synthetic datasets. Consequently, unlike traditional synthetic data generation tech-
niques (Sect. 2), our conformal synthesis algorithm models a confidence-aware distribution 
of the original dataset in the feature space.

With traditional Conformal Prediction (CP), the significance level � provides a sta-
tistically guaranteed error rate. Consequently, it directly regulates the trade-off between 
two opposing desires: low error rates and informative (i.e., narrow) prediction sets 
(Sect.  3.1). A common approach for optimising � is via the elbow method heuristic 
(Jung et al., 2021), identifying the point of diminishing return on improved set sizes at 
the cost of more frequent prediction errors (Fig. 2a). For conformal synthesis, � instead 
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acts as a threshold to identify the high-confidence feature space regions from which 
samples are synthesised. However, it provides only limited guarantees due to the exten-
sion to data generation, discussed further in Sect.  4.2. Nonetheless, we assume and 
empirically investigate a close relationship between � and the overall prediction perfor-
mance on synthesised datasets in Sect. 5. Therefore, we must reinterpret the (approxi-
mated) � trade off in the context of data generation.

Our synthesis priority is to identify the high-confidence feature space regions, e.g., 
to support Deep Learning training. Consequently, an error is interpreted as the exclu-
sion of ‘representative’ synthetic samples. Intuitively, the smaller � is, the wider the 
confidence regions must become to increase the likelihood of ‘representative’ samples 
being included. However, the trade off is the inclusion of ‘unrepresentative’ samples, 
reducing the synthetic dataset’s effectiveness for model training (Fig. 2b). Similarly to 
traditional CP, we must balance the two desires by carefully optimising � . Note that 
because we cannot directly measure the rate of excluding ‘unrepresentative’ samples, 
we assume a close relationship between excluding ‘unrepresentative’ samples and a 
model’s improved performance after training on the synthesised data. Therefore, we 
propose using the model’s performance curve to identify � via the elbow method to opti-
mise downstream model performance, investigated in depth in Sect. 5.2.1.

The definition of the non-conformity measure (NCM) is an additional factor to con-
sider for conformal synthesis. Feature space confidence regions are identified by com-
paring relative differences between non-conformity scores. As a core component to the 
calculations, the NCM may significantly impact the confidence regions’ shapes and, 
consequently, how the original data’s distribution is modelled for synthesis. For exam-
ple, we could prioritise maintaining intra-class relationships by incorporating distances 
between classes or reducing noise by lowering outliers’ importance. This flexibility is 
an inherent advantage of the CP framework and allows adjustments to be made that best 
suit the dataset for improved performance. With this understanding of our proposal’s 
implications, Sect. 4.2 details the algorithm’s steps and characteristics.

Fig. 2   Intuition of the � trade-off for traditional conformal classification (a) and conformal synthesis (b). A 
small � implies low error rates while increasing the inclusion of false labels or ‘unrepresentative’ samples, 
respectively. Note that the latter and the graphs in  (b) must be inferred from downstream model perfor-
mances due to the data generation domain. The elbow method is a straightforward heuristic to select a value 
for � , balancing the opposing desires
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4.2 � Proposed algorithm

Algorithm  1 illustrates the logical flow of our proposed algorithm. Given a feature 
space X ∈ R

d , we construct a grid point representation G� ∈ R
d of X with grid step 

� such that all observed samples x ∈ X fall within its boundaries. Xgrid represents the 
collection of all grid points in G� (Line 1). To prepare for Mondrian Inductive Con-
formal Prediction (MICP), the training data Ztrain =

((
x1, y

∗
1

)
,… ,

(
xn, y

∗
n

))
 with x ∈ X 

and y∗ ∈ Y is split into the proper training and calibration subsets Zprop =
(
z1,… , zm

)
 

and Zcalib =
(
zm+1,… , zn

)
 in Line 2. Then, we calculate the non-conformity scores �y∗

calib
 

of each point in the calibration set with their true label y∗ (Line 3). In principle, any 
non-conformity measure AU may be used. For example, Eq. (11) in Sect. 3.1 defines a 
neighbour-based non-conformity measure AKNN . Similar to the original CP framework, 
the choice may have a significant impact on the size of the prediction sets (i.e., the num-
ber of synthesised samples).

Algorithm 1   Logical flow of the proposed conformal synthesis algorithm based on Mon-
drian inductive conformal prediction (MICP, Sect.  3.1). Each point in a discretised fea-
ture space is treated as a conformal test sample. Its class-conditional confidence dictates 
whether it is sampled as a synthetic point.

Lines 5 to 7 contain the core of our confident data synthesis logic. To synthesise data 
points, we must first evaluate the confidence of each point in the feature space, represented 
by Xgrid . In Conformal Prediction terminology, we treat the grid points as test samples, 
extending them with each possible class label y ∈ Y . Given the label-conditional non-
conformity scores �y

grid
 , we calculate py

grid
 following the Mondrian Inductive Conformal 

scheme (Eq. 12 in Sect. 3.1). The p values represent each grid point’s likelihood of being 
assigned to class y, assuming it represents class y. In other words, these p values establish 
our confidence in a region’s representation of a particular class. The threshold for the label-
conditional confidence regions R�

y
 is the user-selected significance-level � . With this infor-

mation, all grid points falling into the label-conditional high-confidence regions R�

y
 are 

sampled as synthetic data points with their matching class. Finally, the set of all synthetic 
points Zsyn is constructed as the union of the label-conditional synthetic subsets (Line 9).
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Derived from the validity property of CP (Eq. 14), we may draw some conclusions 
about the synthesised data’s characteristics. In parallel with the probability of the true 
label y∗ ∈ Y being included in the prediction set Γ� , the synthesised data R�

y
 will include 

a grid point with the true label ( y = y∗ ) with a marginal probability of 1 − �:

However, inherited from the CP framework, no theoretically-founded conclusions can be 
drawn about the ‘false-class’ predictions where y ≠ y∗ , or grid points being synthesised 
with a false label in conformal synthesis terms. Additionally, the focus lies on the feature 
space regions. Consequently, the synthesised dataset R�

y
 does not necessarily follow the 

object distribution of the original data.
Regarding practical properties, the algorithmic complexity is strongly influenced by 

the Inductive Conformal Prediction variant (Papadopoulos et al., 2007). Assuming the 
underlying algorithm’s training and application complexities Ut and Ua , the number of 
original training samples n, the number of calibration samples m, the number of grid 
points g, and the number of classes c, the algorithmic complexity can be described as:

The largest individually contributing step is evaluating the per-class confidences of each 
point in the grid space (Lines 5 and 6 in Algorithm 1). However, due to the inductive vari-
ant, this step is fully parallelisable both within and between classes. Furthermore, as long 
as the original data set is unchanged, the grid’s p values may be reused to generate con-
fidence regions for any significance level � . Finally, the proposed algorithm’s parameters 
may strongly influence the synthesised output and are investigated in depth in Sect. 5.2.

In summary, our proposed conformal algorithm is a unique approach to employ fea-
ture space confidence for the data synthesis process.With this background, Sect. 5 inves-
tigates our algorithm’s empirical results on real-world datasets.

5 � Empirical results

In this section, we comprehensively evaluate our proposed algorithm’s performance on 
real-world data and against a state-of-the-art density-based generative model. In par-
ticular, we investigated the following research questions:

(14)Γ𝜖 = {y ∈ Y|py > 𝜖}, P(y∗ ∉ Γ𝜖) ≤ 𝜖,

(15)R
𝜖
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•	 What influence do the conformal synthesis parameters have on the synthesised data? 
(Sect. 5.2)

•	 To what degree does conformal synthesis improve Deep Learning performance on 
small and large datasets? (Sect. 5.3.1)

•	 How effective is conformal synthesis at equalising Deep Learning performance on 
highly imbalanced classes? (Sect. 5.3.2)

•	 Can we successfully improve the quality of a dataset with overlapping classes by 
extending it with synthetic data points? (Sect. 5.3.3)

•	 How accurately can we replace a real-world dataset with entirely synthetic examples? 
(Sect. 5.3.4)

•	 How does our proposed synthesis algorithm perform compared to a state-of-the-art, 
density-based generative model? (Sect. 5.3.5)

5.1 � Experimental setup

We conducted a rigorous empirical evaluation of the synthetic data points produced by our 
proposed conformal synthesis algorithm (Sect. 4.2). Because the expected use case is to 
bolster datasets with few samples for Machine Learning, we evaluated the effectiveness of 
our synthesised data by measuring the performance of a Deep Learning model trained on 
it.

5.1.1 � Neural network architecture

We chose a feedforward neural network with three hidden layers for the model, as shown 
in Fig.  3. The model’s architecture and parameters were chosen for their versatility and 
robustness to ensure a good baseline performance on all five selected datasets. The activa-
tion functions are the popular ReLu and Softmax functions for a classification output. The 

Fig. 3   The Deep Learning model architecture used in all trials. Design decisions were made to improve the 
versatility on different real-world datasets and the robustness of the results. The input layer size d and out-
put layer size n are driven by the dataset’s dimensionality and number of classes
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number of output nodes was adjusted based on the evaluated dataset’s number of classes. 
The model was trained for ten epochs with early stopping enabled in all trials.

5.1.2 � Data subsets and synthesis parameters

Each trial was evaluated on the same test set for a meaningful comparison of the Deep 
Learning model’s performance on the original data vs our synthesised data. Figure 4 illus-
trates in more detail how the data was split and the evaluated training data configurations. 
To generate the synthetic samples, Trainorig was temporarily divided into a calibration 
(40%) and a proper training set (60%). Each subset maintained the original class propor-
tions. Primarily, one data split was tested and reported. However, the data split may affect 
the synthesis and model performance results. Therefore, three additional data splits were 
tested in some cases to support identifying high-level trends invariant to the randomness of 
how samples were assigned to the data subsets.

Among a handful of other parameters, the conformal synthesis algorithm relies on 
defining a non-conformity measure (NCM) to identify the confidence regions of the fea-
ture space. We employed a KNN-based NCM that measures the sum of distances to the 
k = 5 nearest neighbours using the generalised Minkowski distance (Eq.  11, Sect.  3.1). 
KNN was chosen as the underlying algorithm due to its simplicity, robustness, and popu-
larity in the Conformal Prediction literature (Renkema et al., 2024; Hernández-Hernández 
et al., 2022; Liu et al., 2021). A more common KNN-NCM additionally divides Eq. (11) 
with the sum of k minimum distances to instances of a different class, reducing confidence 
in regions with class overlap. However, our reasoning for employing the simplified NCM 
is to ensure that those overlapping regions are sufficiently represented in the synthesised 
datasets. Since feature space overlap can be common in real-world datasets, a larger vol-
ume of “difficult” synthesised samples may help Deep Learning models better generalise 
and distinguish them. Section 6 discusses the potential of alternative NCMs on synthesis 
performance. The remaining synthesis parameters’ intuition and influence on the generated 
data are investigated in depth in Sect. 5.2.

5.1.3 � Performance metrics and statistical tests

Our primary performance metrics were the total and per-class F1-scores. Unlike alterna-
tives like accuracy and ROC-AUC, the F1-score is robust against dataset imbalances. The 
per-class Fc

1
 is defined as the harmonic mean of precision Pc and recall Rc , which in turn 

Fig. 4   The original, synthesised, and extended training sets evaluated with Deep Learning on the same 
held-out test set. Initially, Trainorig is temporarily divided into the proper training (60%) and calibration sets 
(40%) for conformal synthesis
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are calculated from the true positive TP, the false positive FP, and the false negative FN 
rates:

To ensure that the results were representative regardless of variance in the model’s train-
ing, we repeated each experiment five times and reported the macro-average of all per-class 
scores:

The Wilcoxon signed-rank test was employed to ascertain whether the Deep learning 
results improved, following (Toccaceli & Gammerman, 2019; Liu et  al., 2022; Johans-
son et al., 2017; Norinder et al., 2021; Campagner et al., 2024). The non-parametric test 
compares two paired groups to investigate whether they are statistically different. The null 
hypothesis assumes that the median of differences of matched pairs is equal to 0 (Rainio 
et al., 2024). It was selected after the Kolmogorov-Smirnov test revealed that the results 
were overwhelmingly not normally distributed. The Wilcoxon test was carried out repeat-
edly, comparing a pair of models each time:

•	 Comparing parallel model test results after training on the original Trainorig and the 
extended Trainext sets;

•	 And comparing two models trained on equivalent datasets generated from different 
splits of the original data (e.g., Trainorig from two data splits).

5.2 � Illustrating the parameters’ influence

We employed a simple toy dataset to demonstrate the influence of our proposed data syn-
thesis algorithm’s three parameters: the significance level � , the number of original training 
samples n, and the grid step �.

Visualised in Fig. 5, the 2-dimensional classification dataset was generated with 2000 
samples and a 1:9 class imbalance. The two classes slightly overlap in the feature space, 
making the classification task more challenging but with an otherwise relatively clear class 
distinction. We limited the training set to 1000 samples to simulate a small dataset, and the 
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TP
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,
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remaining 1000 samples were used to evaluate the Deep Learning model’s performance 
robustly. Each data subset maintained the original class distribution, including when the 
training set was artificially reduced in later sections (Table 1).

5.2.1 � Significance level �

Inherited from the Conformal Prediction framework, the significance level � is a central 
parameter of our proposed algorithm. With it, a user may set the confidence threshold for 
data synthesis (Sect. 4.2). Given the p values of each point in the feature space grid, we 
identified the per-class high-confidence regions where p > 𝜖 . The larger � was, the more 
carefully we controlled the high-confidence regions, tightening them around the existing 
data points (Fig. 6). Consequently, we see a characteristic shape in the model’s F1-score 
performance. The following results were generated while holding the remaining synthesis 
parameters steady to isolate � ’s effect ( n = 300 , � = 0.1 ). Note that because fewer minor-
ity class 1 samples were available, the confidence regions are slightly broader around the 
original samples than class 0.

Due to its significant impact on the synthesised data, � also indirectly affected model 
performance, as visualised in Fig. 7. As � grew, fewer synthetic samples were generated 
because the confidence regions became narrower. This increased the likelihood that rep-
resentative samples were not included in the extended set (i.e., the synthesis error rate 
increases). However, the likelihood of unrepresentative samples being falsely included 

Fig. 5   A straightforward 
2-dimensional toy dataset used 
to illustrate the influence of the 
proposed algorithm’s parameters

Table 1   Toy dataset sample 
counts. The 1:9 class ratio is 
maintained in each data subset. 
60% of the training data is 
temporarily allocated to the 
proper training set and 40% to 
the calibration set for synthesis

Subset Class Test Trainorig

All Prop. Calib. All (n)

n = 1000 Class 0 900 540 360 900
Class 1 100 60 40 100
All 1,000 600 400 1,000

n = 300 Class 0 900 162 108 270
Class 1 100 18 12 30
All 1,000 180 120 300

n = 150 Class 0 900 81 54 135
Class 1 100 9 6 15
All 1,000 90 60 150
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in the extended set was also reduced. At � = 0 , we effectively had no confidence thresh-
old, resulting in all possible points in the feature space being sampled to extend the 
training set for every class. Consequently, a model could understandably no longer dis-
tinguish the classes. However, as � increased and the confidence regions became more 
distinguishing, we saw a sharp increase in modelling performance. Ideally, an equilib-
rium between the desire for improved model performance and low synthesis error rates 
is reached at low � . An intuitive heuristic is the elbow method (Sect. 4.1), which identi-
fied � = 0.2 in this case. Past this point, the F1-score after training on the Trainext data-
set plateaued, increasing model performance by about 30% points compared to models 
trained on Trainorig . Finally, as the number of synthesised samples became negligible, 
the models’ performance on both the original and extended datasets converged.

Analysing the concrete performance results in Table 2, we note that the majority of �
-dependent extended training sets Trainext improved model performances with statistical 
significance according to the Wilcoxon test. The best performance was indeed achieved 

Fig. 6   Effects of the significance level � on the feature space’s confidence regions. The larger � was, the 
more controlled the regions were around the original Class 0 (a) and Class 1 (b)  training samples. New 
samples were synthesised from the high-confidence regions, defined as p > 𝜖

Fig. 7   The effect of � on the synthesised samples (a) and a model’s F1-score after training on the extended 
dataset  (b). A characteristic performance curve was revealed, significantly increasing model performance 
compared to the baseline for a large range of � . The elbow heuristic was employed to identify � = 0.2 as 
optimal



Machine Learning          (2025) 114:57 	 Page 17 of 37     57 

at � = 0.2 with F1 = 90% compared to the baseline of 63%, as indicated by the previ-
ously visualised F1 curve. Increasing the training set with data synthesis improved the 
model’s ability to distinguish between classes reliably. Note that the conformal error 
guarantees do not automatically apply to the model’s performance.

5.2.2 � Original training sample count n

As with Deep Learning training, we assume that a larger training dataset will improve syn-
thesis performance. Therefore, this section investigates the effect of the original training 
sample count n on the feature space confidence regions. Figure 8 illustrates this relation-
ship for class 0 on three subsets of Trainorig with n ∈ {150, 300, 1000} . The confidence 
regions of the feature space became visibly sharper with increasing n, narrowing around 
the original samples (Fig. 5). Assuming that narrower prediction sets reduce the inclusion 
of unrepresentative samples, we expect the performance of a model trained on the syntheti-
cally extended training sets to improve with increasing n.

Table 2   Effects of the significance level � on Deep Learning test results, the mean and standard deviation 
are reported. Training was carried out on the original and extended training sets. The optimal � = 0.2 is in 
bold, selected in Fig. 7b. The majority of results ( 0.2 ≤ � ≤ 0.7 ) passed the Wilcoxon test ( pW < 0.1 ) and 
significantly improved results, marked with *

� F1-score Precision Recall

Trainorig Trainext pW Trainorig Trainext pW Trainorig Trainext pW

0.1 ” 0.72 (.16) 0.46 ” 0.79 (.02) 0.31 ” 0.91 (.00) 0.01*
0.2 0.90 (.00) 0.02* 0.89 (.01) 0.09* 0.91 (.00) 0.01*
0.3 0.89 (.01) 0.03* 0.88 (.02) 0.11 0.91 (.01) 0.01*
0.4 0.89 (.02) 0.03* 0.91 (.04) 0.08* 0.88 (.03) 0.01*
0.5 0.63 (.22) 0.89 (.02) 0.03* 0.66 (.28) 0.91 (.05) 0.08* 0.62 (.17) 0.87 (.04) 0.01*
0.6 ” 0.88 (.02) 0.03* ” 0.91 (.05) 0.08* ” 0.84 (.05) 0.01*
0.7 0.88 (.03) 0.03* 0.93 (.05) 0.07* 0.84 (.05) 0.02*
0.8 0.79 (.15) 0.21 0.95 (.03) 0.04* 0.75 (.15) 0.23
0.9 0.72 (.18) 0.49 0.85 (.23) 0.26 0.69 (.16) 0.54

Fig. 8   Effects of the original training sample count n on the feature space’s confidence regions. With the 
increase of n (a–c), our proposed algorithm could more precisely identify high-confidence regions ( p > 𝜖 ). 
The narrower regions ensured that fewer unrepresentative samples were synthesised
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Table 3 presents the performance of models trained on the original and synthesised data 
with varying n ( � = 0.2 , � = 0.1 ). As expected with the insights from Fig. 8, the number of 
synthesised samples decreased as n grew because the confidence regions became narrower. 
Turning our attention to the Trainext dataset’s F1-scores, each synthesis extension signifi-
cantly improved results between 12–27% points. In particular, the potential for improve-
ment through synthesis was the highest for the smallest datasets n ∈ {150, 300} with as few 
as 15 minority-class samples in Trainorig (Table 1). Examining Trainsyn revealed the same 
trend, indicating the improvements were likely not due to more real data in the training set. 
The Wilcoxon test p values pW in Table 4 confirmed that the performance improvements 
related to the original training sample count n were statistically significant. Note that this 
article synthesises all high-confidence grid points as synthetic samples. In future, further 
synthesis sampling techniques could additionally investigate the precise effects of varying 
synthesised sample counts on the performance Sect. 6).

5.2.3 � Grid step 


The grid step � defines the resolution of our feature space, bounded by the minima and 
maxima of the original dataset’s features. Each grid point may be considered a potential 
synthetic sample with label-conditional p values tested against the significance level � . 
Therefore, the smaller � is, the more synthetic data points will be sampled from our high-
confidence feature space regions, as shown in Fig. 9. A higher density of synthetic samples 
is desirable because Deep Learning models tend to generalise better with larger training 
sets. However, the trade-off is a higher required computing power, as each grid point must 
be evaluated per class. In areas where the classes’ high-confidence regions overlap, both 
classes are assigned the same synthetic samples. Such behaviour would most likely occur 
for datasets with overlapping classes where the Bayes error, i.e., the probability of a perfect 
model making a prediction error (Salazar et al., 2023), is non-zero.

Table 3   Mean and standard deviation prediction results with varying numbers of original training samples 
n. Larger values of n resulted in fewer synthetic samples. The increased model performance indicates that 
the number of unrepresentative synthesised samples was especially reduced. The Wilcoxon test confirmed 
that all Trainext and Trainsyn results statistically improved on the original data ( pW < 0.1)

Samples Trainorig Trainext Trainsyn

n Syn. F1-score F1-score Precision Recall F1-score Precision Recall

150 2041 0.58 (.12) 0.80 (.02) 0.75 (.02) 0.90 (.00) 0.77 (.02) 0.73 (.02) 0.90 (.01)
300 1350 0.63 (.22) 0.90 (.00) 0.89 (.01) 0.91 (.00) 0.90 (.00) 0.89 (.01) 0.91 (.00)
1000 1110 0.79 (.19) 0.91 (.00) 0.92 (.00) 0.90 (.01) 0.90 (.01) 0.90 (.01) 0.91 (.00)

Table 4   The Wilcoxon results 
pW comparing the F1-scores of 
multiple test iterations on the 
Trainext and Trainsyn sets. In all 
cases, the n-driven improvements 
reported in Table 3 were found 
to be statistically significant 
( pW < 0.1 ), marked with *

n Trainext Trainsyn

150 300 1,000 150 300 1,000

150 1.00 0.00* 0.02* 1.00 0.00* 0.00*
300 0.00* 1.00 0.00* 0.00* 1.00 0.09*
1000 0.02* 0.00* 1.00 0.00* 0.09* 1.00
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Table 5 shows these effects on our toy dataset. All extended training sets significantly 
improved on the original performance, increasing the F1-score by up to 29% points. 
Additionally to the improved generalisation, the reduction of the F1-score’s standard 
deviation by a factor of 10 indicates that the models were trained more robustly. Vary-
ing � ∈ {0.1, 0.05, 0.01} while holding the other parameters steady ( � = 0.1 , n = 150 ), we 
found that the number of synthetic samples generated from the exact same high-confidence 
regions significantly increased with a decrease in the grid step. Consequently, the same 
Deep Learning model’s generalisation performance increased by up to 9% points: from F1 
= 78% when trained on the dataset extended with � = 0.1 , to F1 = 87% when trained on the 
dataset extended with � = 0.01 . In particular, recall scores were significantly improved due 
to the stronger representation of the minority class with an increased sample count. Investi-
gating the Wilcoxon p values pW confirmed that the �-induced improvements were statisti-
cally significant for all combinations.

5.2.4 � Bringing everything together

After investigating the three parameters of our conformal synthesis algorithm individually, 
this section illustrates the interactions between the significance � , the number of original 
training samples n, and the grid step � . All three influence the core of our algorithm by 
widening or narrowing the confidence regions in their own way. Consequently, the param-
eter values and the underlying original dataset define the extended training set Trainext.

Fig. 9   Effects of the grid step � on the feature space’s resolution (a, b). The points in the graphs represent 
the grid points that fell into the outlined high-confidence regions ( � = 0.1 ). A smaller � means a higher den-
sity of synthetic samples may be generated from the same high-confidence regions

Table 5   Mean and standard deviation prediction results with varying grid step � . The smaller � was, the 
more synthetic samples were generated. Consequently, the models’ generalisation was improved. The Wil-
coxon test confirmed that the �-related improvements were significant in all cases ( pW < 0.1 ), marked with 
*

� Samples Trainorig Trainext pW ( F1-score)

Ext. F1-score F1-score Precision Recall � 0.1 0.05 0.01

0.1 2,580 0.58 (.12) 0.78 (.03) 0.74 (.02) 0.89 (.01) 0.1 1.00 0.00* 0.00*
0.05 10,330 0.84 (.01) 0.80 (.01) 0.89 (.00) 0.05 0.00* 1.00 0.00*
0.01 258,397 0.87 (.01) 0.87 (.02) 0.87 (.01) 0.01 0.00* 0.00* 1.00
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Figure 10 shows a heat map of the mean F1-scores achieved by a Deep Learning model 
trained on the extended dataset Trainext five times. Interestingly, we observed a pattern with 
the changing parameters. The results tended to increase with the following:

•	 A larger significance level � , which tightened the high-confidence feature space regions;
•	 A smaller grid step � , leading to a higher resolution of the feature space;
•	 And a larger number of original training points n, allowing for more precise modelling 

of the feature space confidence.

Note that these trends are subject to randomness during the models’ training and are not 
guaranteed results. The conformal performance characteristics discussed in Sect. 4 apply 
only to the synthesis process, not the downstream model prediction performances. How-
ever, Fig. 10 indicates that the relationship between model performance and � are closely 
related: prediction performances tended to improve in parallel, subject to randomness in 
the model’s generalisation. A notable exception is the F1-score on data synthesised with 
n = 300 , � = 0.1 , and � = 0.8 . The significantly reduced model performance is likely 
related to an insufficient number of synthetic samples being generated as a consequence 
of narrow confidence regions (caused by high � ) and a low resolution of the feature space 
(caused by low �).

Evaluating the performance results compared to the Trainorig baseline results in Table 6 
revealed that the majority of extended datasets strongly increased model performance by 
9–33% points F1-score across all investigated synthesis parameter settings. The standard 
deviation was also significantly decreased, indicating the synthetic samples enabled the 
Deep Learning models to generalise the dataset more robustly. This insight was further 
supported by the Wilcoxon test, which revealed that the improvements compared to the 
baseline were statistically significant. Only three models narrowly did not pass the test 
( pW < 0.1 ), all occurring at n = 1000 . These results can be traced back to the insight 
that the potential for dataset improvement through synthesis is highest for small datasets 
(Sect. 5.2.2).

Because the synthesis algorithm does not guarantee the models’ prediction per-
formance, the way the original dataset is split may impact generalisation. Therefore, 
additional random splits of the original samples into the test and Trainorig datasets were 
evaluated, which underpin all following subsets (e.g., the proper training and calibration 

Fig. 10   Overview of Deep Learning performance on the extended training sets Trainext , synthesised with 
varying parameters (a–c). Each square represents the model’s mean F1-score on the same original test set. 
Results tended to improve with larger significance levels � , smaller grid steps � , and larger original training 
sample counts n 
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set for synthesis). Table 7 presents the Wilcoxon test p values comparing pairs of model 
performances quantified by the F1-scores. Three new data splits were compared against 
the results achieved on the original data split in turn. For the majority of additional data 
splits, we achieved the desired result of failing to reject the H0 hypothesis, indicating 
the Deep Learning results were statistically similar. Therefore, we may assume that the 
data split had relatively little impact on the synthesis process and the subsequent model 
training. Now that we have systematically and comprehensively evaluated a simple toy 
dataset, we turn to real-world datasets to verify our proposed conformal synthesis algo-
rithm. The insights gained in this section informed the following algorithm parameter 
choices.

5.3 � Evaluating real‑world datasets

To assess the practical benefits of our conformal synthesis algorithm, we tested its applica-
tion to four realistic benchmark datasets. The datasets were carefully selected to showcase 

Table 6   Mean and standard deviation F1-score results with varying conformal synthesis parameters. The 
best results per category are highlighted in bold. The Wilcoxon test confirmed that the improvements were 
largely statistically significant ( pW < 0.1 ), marked with *. The improvement potential of conformal synthe-
sis is largest for small datasets, explaining the small number of exceptions with n = 1000

n � Trainorig � = 0.2 � = 0.5 � = 0.8

Trainext pW Trainext pW Trainext pW

150 0.1 0.58 (.12) 0.80 (.02) 0.00* 0.82 (.04) 0.00* 0.87 (.06) 0.00*
0.05 0.80 (.03) 0.00* 0.89 (.01) 0.00* 0.85 (.06) 0.00*
0.01 0.86 (.00) 0.00* 0.90 (.00) 0.00* 0.91 (.00) 0.00*

300 0.1 0.63 (.22) 0.90 (.00) 0.02* 0.89 (.02) 0.03* 0.79 (.15) 0.02*
0.05 0.90 (.00) 0.02* 0.90 (.01) 0.02* 0.89 (.02) 0.02*
0.01 0.91 (.01) 0.02* 0.91 (.00) 0.02* 0.91 (.00) 0.02*

1000 0.1 0.79 (.18) 0.91 (.00) 0.08* 0.91 (.00) 0.09* 0.91 (.01) 0.09*
0.05 0.91 (.00) 0.11 0.90 (.01) 0.13 0.91 (.00) 0.07*
0.01 0.88 (.03) 0.09* 0.90 (.00) 0.11 0.91 (.00) 0.08*

Table 7   Wilcoxon test results 
evaluating the effect of the data 
split on the models’ F1-scores. 
Three random data splits of the 
original samples were evaluated 
against the previous results 
(Table 6) in turn, with the 
range of p values reported. The 
desirable outcome to consistently 
fail the test pW < 0.1 was reached 
in the majority of cases, marked 
with *. Therefore, we conclude 
that conformal synthesis and 
subsequent model performances 
were largely invariant to the data 
split

n � Trainorig Trainext

� = 0.2 � = 0.5 � = 0.8

150 0.1 0.61−0.88* 0.08−0.19 0.16−0.30* 0.16−0.82*
0.05 0.19−0.45* 0.14−0.20* 0.25−0.34*
0.01 0.12−0.36* 0.35−0.61* 0.54−1.00*

300 0.1 0.93−0.97* 0.14* 0.36−0.55* 0.14−0.38*
0.05 1.00* 0.09−1.00 0.17−0.19*
0.01 0.09−0.27 0.24−0.54* 0.24−0.35*

1000 0.1 0.89–−0.96* 0.10−0.27 0.14−1.00* 0.11−0.35*
0.05 0.29−1.00* 0.14−1.00* 0.20*
0.01 0.24−0.57* 0.13−0.24* 0.09−0.24



	 Machine Learning          (2025) 114:57    57   Page 22 of 37

our algorithm’s range on some of the most prevalent data challenges limiting Machine 
Learning implementations: Low sample count, class imbalance and overlap, and data 
privacy.

Following the details laid out in Sect. 5.1, we measured the success of our algorithm by 
comparing the prediction results of a feedforward neural network trained on the original 
data Trainorig and our extended data Trainext on the same test set. The optimal parameters 
for data synthesis were identified with the insights gathered in Sect. 5.2. Note that we used 
UMAP (McInnes et al., 2018) to reduce all datasets’ dimensions to two features to improve 
the computational complexity of synthesis, discussed in depth in Sect. 6.

5.3.1 � Small dataset

Low sample counts are a ubiquitous challenge for Deep Learning, often caused by the dif-
ficulties and costs of data collection. We used the popular MNIST dataset (LeCun et al., 
1998) to simulate a low training sample count. With 70,000 original samples, we could 
conduct an in-depth investigation of our algorithm’s benefits across a range of dataset 
sizes. 10,000 samples were held back to evaluate the model performances on the test set. 
Figure 11 visualises the dataset, including a representative selection of handwritten digit 
samples (0–9). Each 28 × 28 pixel image was scaled to (0, 1) and reduced to two dimen-
sions before synthesis. Figure 11b shows the samples’ distribution in the feature space after 
pre-processing. While some classes were clearly linearly separated, most were adjacent 
with limited overlap. Overall, the classes were roughly equally distributed and this distribu-
tion was maintained for each data subset (Fig. 11c).

The core purpose of our proposed algorithm is to support Deep Learning generalisation 
by extending datasets with synthetic training samples. To showcase our approach’s ben-
efits across varying set sizes, we artificially under-sampled Trainorig creating four subsets 
Dn with n ∈ {500, 1000, 10, 000, 60, 000} training samples. Figure 12 reveals that all four 

Fig. 11   The MNIST dataset of handwritten digits. Each image (a)  was reduced to two dimensions with 
UMAP before model training (b). Most classes were adjacent with some overlap, making class separation 
challenging. The relative class distributions were maintained in all data subsets (c)
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subsets followed the expected model performance pattern for different � when trained on 
the corresponding extended Trainext sets ( � = 0.01 ): A sharp increase, followed by a pla-
teau and then converging with the baseline performance on Trainorig . The larger the origi-
nal training set was, the more quickly the performance increased. We employ the elbow 
method to select the optimal � , identifying � = 0.2 for D500 and D1000 , and � = 0.1 for 
D10,000 and D60,000.

Generally, the more original training points were available, the smaller the number 
of synthesised samples was, caused by more precise (and therefore more narrow) confi-
dence regions. To illustrate the relationship between � , the original training set size, and 
the number of synthesised samples, Table 8 reports the exact sample counts. In particu-
lar, we investigated the optimal � for each training subset as well as � = 0.9 , since models 
performed roughly as well on these Trainext sets as for their optimal � (Fig. 12). Notably, 
the number of synthesised samples decreased as the number of original samples n and the 
significance level � increased. Intuitively, increasing both parameters caused the confidence 
regions to narrow and surround the original training samples more precisely, reducing the 
feature space area from which new samples are synthesised. � was the single most influen-
tial factor, reducing synthesised sample counts by a factor of up to around 20, going from 
� = 0.1 to � = 0.9.

Investigating this aspect further in Table 9, we note that in many cases, training sets 
extended with samples synthesised with optimal low � and � = 0.9 confidence thresh-
olds performed very similarly on F1-score, precision, and recall. While we prioritised 
low � to reduce the synthesis error in this article, a different heuristic may be to select 
the highest possible � with the elbow method to reduce the number of required synthe-
sis samples, constructing the most efficient extended training set to maximise model 
performance (discussed further in Sect.  6). Comparing the performance against the 
baseline, models trained on Trainorig performed very poorly on low training sample 
counts as expected (under 30% F1-score for D500 and D1000 ). The score increased up 
to 82% with the maximum number of original training samples ( D60,000 ). In contrast, 
our synthetic dataset extension surpassed that performance from 10,000 original train-
ing samples. With only 500 original samples, our algorithm synthesised samples that 
improved model performance from 21 to 79% F1-score. While the rate of improvement 
decreased with increasing training samples, our extended Trainext consistently outper-
formed Trainorig , reaching a maximum of 83% on the full dataset. Because the classes 
were roughly equally balanced in the original dataset, this increase was caused by pre-
cision and recall improving in equal measures across the classes.

Fig. 12   Mean model perfor-
mances on the extended datasets 
synthesised from Trainorig subsets 
with 500, 1000, 10,000, and 
600,000 samples. The larger the 
original training dataset was, the 
faster the performance increased, 
allowing us to identify lower � 
values with the elbow method 
( � = 0.2 for the two smaller 
subsets and � = 0.1 for the two 
larger datasets)
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These results show that our synthesis algorithm can successfully identify high-con-
fidence class regions of the feature space with very few original training samples. This 
makes our proposal highly advantageous for Deep Learning, as its synthesised samples 
allow for significantly improved model generalisation without requiring additional data 
collection.

Table 8   Original and synthesised sample counts. The larger the original dataset was, the narrower and more 
precise the confidence regions were, and the fewer new sample points were synthesised. Note that the num-
ber of synthesised samples also depended on the significance level. Therefore, the comparison is most clear 
when comparing variations of n for the same �

Subset Test Trainorig � Trainsyn Trainext

All Prop. Calib. All (n) All All

D
500

10,000 300 200 500 0.2 1,213,241 1,213,741
0.9 126,190 126,690

D
1000

10,000 600 400 1000 0.2 1,028,384 1,029,384
0.9 75,067 76,067

D
10,000

10,000 6000 4000 10,000 0.1 1,287,020 1,297,020
0.9 49,908 59,908

D
60,000

10,000 36,000 24,000 60,000 0.1 1,128,440 1,188,440
0.9 44,242 104,242

Table 9   Deep Learning results on the MNIST dataset, investigating the impact of reducing the size of sam-
ples in Trainorig before synthesis and model training. The best results per category are highlighted in bold. 
The mean and standard deviation of five trials are reported. As the number of original samples increased, so 
did the models’ performance, although at different rates. The precision and recall scores stayed level with 
each other, implying that synthesis successfully maintained the class’ original balance. The Wilcoxon test 
confirmed that the improvements were statistically significant ( pW < 0.1)

F1-score Precision Recall

� Trainorig Trainext pW Trainorig Trainext pW Trainorig Trainext pW

D
500

0.2 0.21 (.07) 0.79 (.07) 0.00* 0.21 (.06) 0.80 (.00) 0.00* 0.29 (.09) 0.79 (.01) 0.00*
0.9 0.77 (.01) 0.00* 0.78 (.01) 0.00* 0.77 (.01) 0.00*

D
1000

0.2 0.26 (.04) 0.80 (.01) 0.00* 0.27 (.05) 0.82 (.01) 0.00* 0.36 (.05) 0.80 (.01) 0.00*
0.9 0.80 (.01) 0.00* 0.80 (.01) 0.00* 0.80 (.01) 0.00*

D
10,000

0.1 0.72 (.04) 0.81 (.01) 0.00* 0.76 (.02) 0.82 (.01) 0.00* 0.74 (.03) 0.81 (.01) 0.00*
0.9 0.83 (.00) 0.00* 0.84 (.00) 0.00* 0.83 (.00) 0.00*

D
60,000

0.1 0.82 (.01) 0.81 (.01) 0.00* 0.84 (.02) 0.82 (.01) 0.00* 0.82 (.02) 0.81 (.00) 0.00*
0.9 0.83 (.01) 0.09* 0.84 (.00) 0.11 0.83 (.01) 0.08*
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5.3.2 � Imbalanced data

Class imbalances are a frequent and often inevitable occurrence in real-world datasets due 
to the underlying population’s unequal distribution (e.g., healthy vs infected). Even if the 
total number of available samples is large, the minority class’s under-representation may 
lead to skewed results. To illustrate the effects of imbalance on model performance and 
the combating benefits of our data synthesis algorithm, we use the MSHRM benchmark 
dataset (Lincoff, 1983). MSHRM contains records of around 8100 samples separated into 
edible (class 0) and poisonous (class 1) mushrooms. The pre-processing steps include 
replacing categorical variables with dummies and reducing the samples to two dimensions 
with UMAP (Fig. 13).

Once again, we simulated different levels of class imbalance by sub-sampling the 
original dataset to create four subsets D with 1:1, 1:2, 1:4, and 1:9 class ratios. Table 10 
contains the tested subsets and their per-class sample counts. Following the procedure in 
Sect. 5.3.1, � = 0.1 was selected via the elbow method. Worth noting is that the level of 
imbalance had a drastic impact on the number and class distribution of our synthetic sam-
ples, far out-reaching the class ratio of Trainorig (e.g., D1∶9 with 1:9 original vs 1:55 syn-
thetic sample class ratios).

The Deep Learning results are shown in Table  11. As expected, model performance 
on Trainorig decreased severely with the increasing imbalance (76%–34%). The primary 
contributor was the F1-score on the minority class 1, which dropped from 75% to 0%. In 
contrast, the model’s overall F1-score when trained on the extended training sets remained 
steady at around 96%, increasing by 20–61% points with increasing class imbalance. Inter-
estingly, although the synthetic samples reintroduced the class imbalance (albeit with class 
1 now as the majority class), the imbalance was not represented in the final results. Visual-
ising this tendency in Fig. 14, we found that over-supporting the minority class with syn-
thetic samples did not have the same negative performance impacts as the original imbal-
ance had.

5.3.3 � Overlapping classes

Deep Learning modelling of prediction tasks relies on the separability of the classes. 
However, real-world datasets often do not have clear separation due to sample noise and 
uninformative features. We demonstrate the advantages of our proposed algorithm in these 
cases on the WINE benchmark dataset (Cortez et al., 2009), where we classify whether a 

Fig. 13   The MSHRM dataset. 
Originally roughly equally 
distributed, we artificially sub-
sampled the data to simulate 
class imbalances of varying 
severity for synthesis
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sample represents white (class 0) or red (class 1) wine based on chemical measurements. 
As shown in Fig.  15, this “difficult” dataset had no class separability, with both classes 
overlapping quite significantly in the feature space. Consequently, the high-confidence 
regions for data synthesis overlapped as well. Table 12 records the evaluated original, syn-
thetic, and extended sample counts ( � = 0.2, � = 0.1).

Figure  16 visualises the mean and standard deviation performance of five models 
trained on the original Trainorig and the extended Trainext datasets. Compared to the 43% F1
-score achieved on the original data, including the synthesised data for training increased 

Table 10   MSHRM sample 
counts with varying imbalance, 
differentiated by class. The 
original data’s imbalance 
significantly impacted the 
balance of the synthetic samples 
( � = 0.1, � = 0.01 ). The larger 
the imbalance was, the more 
samples were synthesised for the 
minority class 1

Subset Class Test Trainorig Trainsyn Trainext

All Prop. Calib. All All All

D
1:1

0 1394 1698 1132 2830 26,585 29,415
1 1287 1568 1045 2613 16,926 19,539
All 2681 3266 2177 5443 43,511 48,954

D
1:2

0 1394 1696 1130 2826 29,251 32,077
1 1287 836 557 1393 65,423 66,816
All 2681 2532 1687 4219 94,674 98,893

D
1:4

0 1394 1699 1132 2831 27,162 29,993
1 1287 425 283 708 197,530 198,238
All 2681 2124 1415 3539 224,692 228,231

D
1:9

0 1394 1697 1131 2828 30,383 33,211
1 1287 189 126 315 1,658,057 1,658,372
All 2681 1886 1257 3143 1,688,440 1,691,583

Table 11   MSHRM Deep Learning results with varying class imbalance. We report the mean and standard 
deviation across five iterations. The best results per category are highlighted in bold. Performance on the 
original dataset decreased significantly with increasing imbalance. Conversely, performance on the synthet-
ically extended training set was significantly improved compared to the baseline ( pW < 0.1 ) and remained 
stable across classes and as the imbalance shifted

Data Class F1-score Precision Recall

Trainorig Trainext pW Trainorig Trainext pW Trainorig Trainext pW

D
1:1

0 0.78 (.04) 0.96 (.01) 0.00* 0.77 (.07) 0.97 (.01) 0.00* 0.78 (.06) 0.95 (.02) 0.00*
1 0.75 (.07) 0.96 (.01) 0.00* 0.76 (.04) 0.95 (.02) 0.00* 0.75 (.11) 0.97 (.01) 0.00*
All 0.76 (.05) 0.96 (.01) 0.00* 0.77 (.05) 0.96 (.01) 0.00* 0.76 (.05) 0.96 (.01) 0.00*

D
1:2

0 0.74 (.01) 0.96 (.03) 0.00* 0.59 (.01) 0.98 (.02) 0.00* 0.98 (.02) 0.93 (.04) 0.00*
1 0.43 (.05) 0.95 (.03) 0.00* 0.93 (.05) 0.93 (.04) 0.08* 0.28 (.05) 0.98 (.02) 0.00*
All 0.58 (.03) 0.96 (.02) 0.00* 0.76 (.03) 0.96 (.02) 0.00* 0.63 (.01) 0.96 (.02) 0.00*

D
1:4

0 0.70 (.02) 0.97 (.00) 0.00* 0.54 (.03) 0.97 (.00) 0.00* 1.00 (.00) 0.97 (.01) 0.00*
1 0.13 (.17) 0.97 (.00) 0.00* 0.39 (.54) 0.97 (.01) 0.04* 0.08 (.11) 0.96 (.00) 0.00*
All 0.41 (.10) 0.97 (.00) 0.00* 0.47 (.28) 0.97 (.00) 0.00* 0.54 (.05) 0.97 (.00) 0.00*

D
1:9

0 0.68 (.00) 0.95 (.01) 0.00* 0.52 (.00) 0.96 (.00) 0.00* 1.00 (.00) 0.94 (.02) 0.00*
1 0.00 (.00) 0.95 (.01) 0.00* 0.00 (.00) 0.94 (.02) 0.00* 0.00 (.00) 0.96 (.00) 0.00*
All 0.34 (.00) 0.95 (.01) 0.00* 0.26 (.00) 0.95 (.01) 0.00* 0.50 (.00) 0.95 (.01) 0.00*
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the performance by 26% points to a total of 69%. Precision and recall results confirmed 
that the model’s ability to identify relevant samples was indeed strengthened. In summary, 
even though our proposed algorithm did not increase the linear separability of the classes, 
it nonetheless significantly improved the model’s performance. The model’s learning was 
supported through the synthesis of a large number of new training samples.

5.3.4 � Synthetic replacement

As a final show of our algorithm’s ability to accurately synthesise new samples, we tested 
a complete synthetic replacement of the original dataset for Deep Learning training. The 
experiments were carried out on the USPS dataset of digits scanned from envelopes by the 
U.S Postal Service (Hull, 1994), shown in Fig. 17a. The classes were roughly balanced, 
except for a slight majority in classes 0 and 1 (Fig.  17b). The relative proportions were 
maintained in all sampled subsets. Of the roughly 9300 available samples, 2000 were held 
back for testing. The remaining 7291 training samples were temporarily split into 60% 
proper training and 40% calibration subsets for conformal synthesis.

Fig. 14   Mean Deep Learning performance on the MSHRM dataset with varying class imbalance. Perfor-
mance on the original dataset decreased significantly with increasing imbalance, widening class discrepan-
cies  (a). Conversely, performance improved on the extended training set (b) because the number of syn-
thetic samples was increased exponentially (Table 10)

Fig. 15   The WINE dataset showed significant class overlap in the feature space  (b, c). Consequently, the 
high-confidence regions identified by our synthesis algorithm were also overlapped. The non-separability of 
the classes (a) made accurate predictions challenging
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Conformal synthesis was performed using all available training samples and the grid 
step � = 0.01 . Figure 18 summarises the results as � varies. Compared to the baseline on 
Trainorig , the mean F1-score performance improved by around 10% points across all � . 
Since the results were consistent on different Trainsyn , we may choose a low significance 
level to increase confidence. Therefore, Fig. 18b visualises the models’ performances for 
� = 0.1 . In addition to the mean of all metrics being improved, the standard deviation was 
also decreased, indicating a more robust model generalisation. Precision and recall results 
indicated that our synthesis algorithm preserved the original classes’ balance, allowing 
models trained on the synthetic datasets to maintain or even strengthen their ability to iden-
tify relevant samples. The Wilcoxon test confirmed that all reported performance improve-
ments achieved by Trainsyn were statistically significant, with pW values falling in the range 
0.00−0.02.

Table 12   WINE original and 
synthetic sample counts. While 
synthesis generally maintained 
the class’s non-separability, 
significantly increasing the 
number of available training 
samples may nonetheless support 
Deep Learning generalisation

Classes Test Trainorig Trainsyn Trainext

All Prop. Calib. All All All

Class 0 536 653 435 1088 29,169 30,257
Class 1 536 653 435 1088 31,149 32,237
All 1072 1306 870 2176 60,318 62,494

Fig. 16   Mean Deep Learn-
ing performance on the WINE 
dataset. The error bars show the 
standard deviation. Even though 
synthesis did not improve the 
classes’ separability, the large 
quantity of additional samples 
significantly improved the mod-
els’ generalisation. All improve-
ments were deemed statistically 
significant by the Wilcoxon test 
( pW < 0.1)

Fig. 17   Overview of the USPS dataset. Each sample is a grey-scale image of a handwritten digit in a 16× 16 
pixel format (a). The classes were roughly balanced except for classes 0 and 1 (b)
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Finally, Fig. 19 investigates the synthesised samples in more detail. Comparing the orig-
inal feature space and the synthesised feature space after UMAP dimensionality reduction, 
we see clear parallels in the sample and class distributions. Additionally, inverting a ran-
dom synthesised test sample per class revealed recognisable digit images (Fig. 19c) similar 
to the original samples (Fig. 17a), supporting the feature space confidence approach of our 
proposed algorithm.

5.3.5 � Comparison to density‑based synthesis

In this section, we compare our conformal synthesis algorithm against a state-of-the-art 
density-based technique to highlight our proposal’s unique properties when generating new 
points from small datasets. In particular, we employ KDE-based density estimation with 
a Gaussian kernel and the Euclidean distance metric (Sect. 2). Figure 20a illustrates the 
synthesis procedure. Regulated by the bandwidth parameter w, new data points may be 
synthesised from the data’s density estimation. Intuitively, w regulates the estimator’s bias-
variance trade-off. Larger values lead to overly smooth estimates. In contrast, smaller val-
ues cause estimates that are too strongly influenced by the data’s variance. To select a value 
for w, we must rely on empirical performance or heuristics that may produce sub-optimal 
results. We employed the Silverman rule of thumb, a popular heuristic (Belhaj, 2024). In 
contrast, our conformal synthesis algorithm (Sect.  4) relies on the confidence of feature 
space regions, thresholded by the significance level � (Fig.  20b). Unlike the bandwidth 
parameter w, � provides a statistically meaningful boundary based on hypothesis testing, 
discussed in Sect. 4.2.

The synthesis performance was evaluated on the most difficult variant of each dataset 
with the conformal synthesis parameters used in Sect. 5.3:

•	 MNIST ( D500 ): � = 0.2 , � = 0.01.
•	 MSHRM ( D1∶9 ): � = 0.1 , � = 0.01.
•	 WINE: � = 0.2 , � = 0.01.
•	 USPS: � = 0.1 , � = 0.01.

Fig. 18   USPS performance results on the baseline Trainorig and a fully synthetic dataset ( � = 0.01 ). The 
mean of five Deep Learning iterations was reported  (a), including the standard deviation as error bars in 
(b). All synthetic improvements were found to be statistically significant with the Wilcoxon test ( pW < 0.1)
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Since the number of synthesised samples follows from the conformal synthesis param-
eters, we synthesised the same number of samples from the KDE model to ensure a 
fair comparison. The sample statistics per dataset are summarised in Table  13, with 
class-conditional details in Sect. 5.3. All models were trained on the extended Trainext 
sets and evaluated on the same held-back test sets except for USPS models, which were 
trained on the synthesised samples Trainsyn instead.

Table 14 presents the mean results across five training iterations. While KDE tended 
to improve on the baseline models trained on the original datasets (Sect. 5.3), our con-
fidently synthesised training sets outperformed KDE on all datasets. The likely cause 
was that the KDE bias-variance trade-off was sub-optimal, resulting in under- or over-
fitted density estimates. However, improving the regulating parameter w is challenging 
because it does not have a transparent theoretical background compared to the parallel 
conformal � (Sect. 4.2). The techniques’ performance differences were most prominent 
on the MSHRM and WINE datasets (+53 and +28% points F1-score, respectively), 
indicating the potential of conformal synthesis for challenging datasets with imbal-
anced and overlapping classes in particular. The Wilcoxon test confirmed that all per-
formance improvements were statistically significant.

6 � Practical advice and future work

Small sample counts, data imbalances, and overlapping classes are ubiquitous challenges 
that regularly reduce prediction performances on real-world datasets. Through extensive 
experimentation (Sect. 5), we have comprehensively showcased the potential of conformal 

Fig. 19   Original (a)  and generated samples (b)  of the USPS dataset after UMAP processing. Conformal 
synthesis successfully maintained the distribution of samples and classes in the feature space. Additionally, 
inverting the UMAP transformation on random synthesised points (c) revealed recognisable digits similar to 
the original samples (Fig. 17a)
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Fig. 20   Comparison of the KDE (a) and proposed synthesis algorithms (b) on MNIST samples (class = 2). 
The KDE technique requires random sampling from its learned density distribution, which is heavily influ-
enced by the freely selected bandwidth parameter w. In contrast, conformal synthesis relies on a confidence 
threshold � , which bounds and defines the synthesis regions

Table 13   Sample counts per 
dataset for the KDE comparison. 
Models were trained on Trainext 
as identified by the proposed 
conformal and KDE synthesis 
algorithms, except for the USPS 
dataset, which was evaluated on 
Trainsyn

Test Trainorig Trainsyn Trainext

MNIST 10,000 500 1,213,241 1,213,741
MSHRM 2681 3143 1,688,440 1,691,583
WINE 1072 2176 60,318 62,494
USPS 2007 7291 406,251 –
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synthesis to confidently generate new data points for these difficult datasets, ultimately 
improving prediction performance. It is important to note that the conformal confidence 
guarantees are somewhat limited by the extension to data synthesis (Sect. 4), and further-
more do not automatically guarantee downstream prediction performance. However, the 
extensive results analysis in this article indicates that optimising � is closely paralleled 
by increasing model performance. An interesting avenue to explore in future would be to 
derive further guarantees about the synthesised data, and to combine conformal synthe-
sis with traditional conformal predictors to investigate the interactions of confidence-aware 
data generation and prediction.

Apart from the original data (e.g., the number of available samples n), the type and 
number of generated samples are significantly influenced by a range of synthesis param-
eters. The primary contributors are the grid step � and the significance level � . � can be 
interpreted as the resolution of the feature space, where the confidence of each grid point is 
evaluated for synthesis. Smaller values result in more grid points and, consequently, more 
potential synthesis samples (Sect. 5.2.3). Note that in this article, we synthesised all high-
confidence grid points as synthetic samples. More sophisticated sampling techniques could 
be investigated in future to generate a pre-selected number of synthetic samples. In addition 
to � , � ∈ (0, 1) represents the confidence threshold above which grid points are included in 
the high-confidence regions for synthesis (Sect. 5.2.1). Intuitively, smaller � lead to larger 
confidence areas, increasing the synthesised sample count. In this article, we prioritised 
low � to maximise the inclusion of correctly-labelled synthesis samples (Sect.  4.2). An 
alternative approach that merits further investigation would be to maximise � , generating 
an information-efficient synthetic representation of the original dataset by minimising the 
number of required samples. Potentially, this approach could be useful for confident data 
anonymisation tasks in the future.

Additionally, the underlying non-conformity measure (NCM) may significantly influ-
ence the feature space confidence regions. Inherited from the Conformal Prediction frame-
work, the NCM drives the proposed synthesis algorithm’s capacity to effectively distin-
guish between low and high confidence regions without affecting conformal validity 
(Sect. 3.1). In this article, we employed a KNN-based NCM to evaluate feature space con-
fidence as a robust baseline (Sect. 5.1.2). Future work could investigate more sophisticated 
definitions to improve synthesis and subsequent prediction performances.

Theoretically, the proposed synthesis algorithm is compatible with any dimension and 
complexity of feature spaces. However, the confidence region computations may become 
prohibitively expensive for high-dimensional datasets (Eq.  19, Sect.  4.2). Therefore, 

Table 14   Comparison of conformal synthesis and density-based synthesis samples. Models were trained on 
Trainext generated by the proposed algorithm (CPS) and by KDE. The mean and standard deviation across 
five iterations were reported with the best performance per dataset in bold. All CPS improvements were 
confirmed as statistically significant by the Wilcoxon test ( pW < 0.1 ), marked with *

F1-score Precision Recall

CPS KDE pW CPS KDE pW CPS KDE pW

MNIST 0.79 (.07) 0.62 (.08) 0.00* 0.80 (.00) 0.66 (.10) 0.02* 0.79 (.01) 0.67 (.05) 0.00*
MSHRM 0.95 (.01) 0.42 (.08) 0.00* 0.95 (.01) 0.65 (.21) 0.02* 0.95 (.01) 0.55 (.04) 0.00*
WINE 0.71 (.00) 0.43 (.00) 0.00* 0.72 (.04) 0.38 (.00) 0.00* 0.76 (.00) 0.50 (.00) 0.00*
USPS 0.92 (.00) 0.85 (.04) 0.01* 0.92 (.01) 0.88 (.03) 0.03* 0.92 (.00) 0.84 (.04) 0.01*
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techniques to reduce the investigated feature space are vital for practical use. For example, 
this challenge may be addressed with dimensionality reduction techniques (e.g., UMAP), 
scaling features to a smaller range, and choosing an appropriate resolution of the feature 
space with the grid step � . Avenues to improve the synthesis algorithm’s complexity in the 
future include pre-selecting feature space regions of interest for which confidence scores 
are calculated rather than processing the entire space.

7 � Conclusion

In conclusion, we have presented a unique conformal data synthesis algorithm that utilises 
label-conditional feature space confidence for the data generation process. In addition to 
a systematic investigation of our proposal’s parameters and characteristics, we presented 
extensive empirical experiments on five benchmark datasets. The comprehensive results 
demonstrated our algorithm’s advantages for a variety of ubiquitous real-world challenges:

•	 Synthesising new data to significantly boost the sample size of small datasets, as well 
as correcting class imbalances,

•	 Supporting a model’s learned feature space representations of non-separable classes,
•	 And replacing an entire dataset with synthetic samples, maintaining Deep Learning 

prediction performance.

While our proposed algorithm is capable of synthesising any data, generating associated 
ground truths is currently limited to classification labels and may be an interesting avenue 
for further extension.
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