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Abstract—Cough segmentation using Machine Learning is
known to be sensitive to the effects of class-confounding char-
acteristics in the training data, significantly skewing predictions
with the introduction of bias. Mechanisms by which bias may
permeate a dataset include small sample sizes and noise in the
samples. In this paper, we propose a novel audio segmentation
algorithm as a means to solve these issues through automatic
isolation and extraction of biological audio events. Our algorithm,
CoBrS, is based on heuristics derived from physiological assump-
tions and is designed to accurately isolate all cough types, includ-
ing the complex peal cough, and provides segmentation support
for breaths, a previously undocumented modality in segmentation
literature. CoBrS was validated on three public cough datasets
with varying segmentation complexity (Coswara, COUGHVID,
Virufy) against two state-of-the-art algorithms (COUGHVID and
Virufy), achieving mean signal quality increases of 169.3%,
274.2%, and 39.8%, and sample size increases of 250% and
280% respectively. Our findings were also manually verified by
two human raters who reported a 94% peal cough segmentation
rate and that 88% of coughs in the moderate noise test subset are
of high quality. Our algorithm is capable of effectively isolating
cough and breath events of all types from samples with low to
moderate noise, whilst improving signal quality and retaining
high-frequency information that is often lost in the process.

Index Terms—cough segmentation, audio signal processing,
audio noise filtering, breath segmentation, bias mitigation

I. INTRODUCTION

In recent years, diagnosis of respiratory diseases such
as COVID-19 through the amalgamation of digital signal
processing (DSP) and machine learning (ML) techniques on
respiratory sounds has become a viable option for digital mass
testing [1]–[3]. The classification performance of these ML
algorithms relies in part on consistent, high-quality data, where
predictors can effectively discriminate classes based on com-
puted features. Class-confounding characteristics, introduced
into the training data where some variables are uncontrolled,
can significantly skew predictions and lower classification
accuracy [4]. Clinical and crowdsourced bioacoustic datasets
[5]–[7] often contain recordings of various durations contain-
ing many biological events that are unfortunately interspersed
with noise, sometimes with noise overlapping the events,
rendering it impossible to meaningfully extract latent features.

For example, Coppock et al. propose that bias can be subtly
encoded in audio samples through the ambient acoustical
environment in which the coughs were recorded [8]. Consider
the classification of COVID-19 negative and positive coughs.
Positive coughs are often recorded in medical settings, and
this acoustical environment is consistent and embedded in
the audio sample. An issue arises if a predictor learns this
association in the training set and a positive cough is present
in the test set outside of this learned environment; the predictor
might misclassify it as a negative cough due to bias [8].

We hypothesise that an intuitive segmentation strategy can
address these ubiquitous challenges affecting data quality in
this emerging field, and propose such a strategy in this work.

A. Our Contributions

• We develop a novel audio segmentation algorithm based
on heuristics derived from physiological assumptions,
allowing us to accurately isolate a complex third cough
type, the peal cough, which is often overlooked in other
segmentation studies and consequently identified as indi-
vidual coughs by hypersensitive algorithms.

• We incorporate the breath modality, which is often mixed
within the cough signals, but whose waveforms present
differently to coughs, with varied patterns, lower ampli-
tudes, and unique frequencies. To our knowledge, this is
the first segmentation algorithm for the breath modality
and the first validation study on a breath dataset.

• We validate our segmentation algorithm on three public
datasets with varying segmentation complexity against
two state-of-the-art algorithms. Additionally, two human
raters manually spot-checked all segmented subsets to
ensure the quality of the proposed method.

The remainder of the paper is organised as follows. Section
II explores related work in the field of cough audio segmen-
tation and how our work expands upon these implementa-
tions. Section III disseminates the physiological information
regarding cough and breath events and how our proposed
algorithm is developed with this information in mind. Section
IV outlines empirical experimentation on three public datasets,



to extensively validate our proposed algorithm. Section V
explores the results of our validation and how we address the
problems outlined in Section I. Lastly, Section VI provides a
summary of our results and our ambitions for the future.

II. RELATED WORK

ML-based audio segmentation is still in its infancy. Cohen-
McFarlane et al. explored different methods for silence re-
moval and segmentation optimisation for cough events, using
indoor-recorded audio with low to moderate background noise
[9]. They compared standard deviation (SD), short-term energy
(STE), and zero-crossing rate (ZCR) to manual segmentation,
and found that ZCR had the highest accuracy at 89% but failed
under noisy conditions [9]. Their research was promising,
and so we built upon this by further assessing the effects of
segmentation on sample size and signal quality.

Orlandic et al. developed a cough segmentation algorithm as
part of a quality estimator for the COUGHVID cough sounds
database [6]. The algorithm is based on a digital hysteresis
comparator on the signal power, firstly preprocessed through
normalisation to the [-1, 1] range, downsampling to 12 kHz,
and lowpass filtering (fcutoff = 6 kHz) [6]. This large-scale
study differs from us in how audio signals are pre-processed
and segmented, explored in detail in Sections III-B & IV-A.
Their algorithm is publicly available, and so we consider it
state-of-the-art and validate our results against theirs.

Lastly, Amrulloh et al. proposed a complex automated
cough extraction methodology for pediatric ambulatory record-
ings using deep learning (DL) [10]. A feature matrix includ-
ing Mel-frequency cepstral coefficients (MFCCs), Formant
frequency, ZCR, non-Gaussianity score (NGS), and Shannon
entropy is fed into a trained artificial neural network (ANN)
classifier to differentiate sub-blocks into cough and non-cough
classes. In this paper, we offer an alternative without neces-
sitating a need for DL computational overhead, supporting
inclusion in existing workflows and usage in edge devices.

III. METHODOLOGY

We hypothesise that an intuitive segmentation strategy can
address the ubiquitous challenges affecting data quality out-
lined in Section I, by modelling the physiological character-
istics of these biological events and extracting them in their
entirety from the main audio sample; thus, a new child sample
is created without noise and encoded bias, therefore improving
the signal quality. By only extracting clear, meaningful data
from the audio sample and not the events overlapping with
noise, the signal quality of the overall training set is improved;
this is shown to correlate with better classification accuracy.

Consequently, segmentation increases the training set sam-
ple size. Audio samples with a poor quality ratio of biological
events are no longer discarded completely; good-quality events
are first extracted before discarding the low-quality remainder.

A. Cough and Breath Physiology

Understanding the physiology of cough and breath sounds
is paramount when designing a segmentation algorithm that

will not detect non-biological sounds or ambient noise. The
physiological mechanics of a cough consist of a stereotypic
inspiratory phase, then complete closure of the glottis, allow-
ing compression of the thorax to increase subglottic pressure
(compression phase). Then, the rapid opening of the glottis
results in a peak supramaximal expiratory flow phase followed
by high expiratory airflow (plateau phase) [11]. However, we
govern our algorithm design by the observable phases, not the
airflow phases. The inspiratory/compressive phases are near-
silent, followed by peak airflow and plateau expiratory phases
(termed phase 1: the explosive phase), with an intermediate
phase (phase 2) and a voiced phase (phase 3) following.
Coughs with three distinctive phases are characterised as 3-
phase coughs, and coughs without a voiced phase are known as
2-phase coughs; two phases occur in approximately one-third
of subjects [11]. We explore these varying phase configurations
and the different inter-phase energy fluctuations in our previ-
ous work [3], [12]. Previous studies (including ours), however,
neglect a complex third cough type known as a peal cough (see
Figure 1, Graph A). Therefore, it is the focus of this study.
A peal cough presents with a large inspiration followed by
multiple expulsive events, each typically decreasing in expired
volume. Unlike the average duration of 410 ms for a standard
cough, peal coughs are much longer averaging 1.23 s [11].

The second focus of this study is breaths (see Figure 1,
Graph B). The physiological mechanics of breath consist
of an inspiratory phase, where the diaphragm and ribcage
expand and contract allowing airflow and pressure balance,
then exhalation to relax the diaphragm and expel air (post-
inspiratory phase) [13]. We found that the duration of the
inspiratory phase is approximately 1 to 1.5 s, with a very brief
intermediary phase of 100 to 300 ms, then post-inspiratory 1.5
to 2 s. We also analysed the breathing patterns of subjects in
the data; the majority were box breathing, where there is an
equal duration of inhalations and exhalations [14]. In lesser
numbers, we observed cyclic sighing, which emphasizes pro-
longed exhalations, and cyclic hyperventilation with retention,
where there are longer inhalations and shorter exhalations [14].
Through manually listening to samples we found there were
various combinations of nasal, oral, and nasal-oral breathing
present in the data. We are the first to perform such analysis.

Fig. 1. Time-expanded waveform and spectral analysis of cough & breath
demonstrate frequency spread up to 20 kHz, supporting existing research [15].



B. Our Proposed Algorithm

Our proposed algorithm focuses on the physiology of
coughs (particularly the underrepresented peal coughs) and
breaths. We propose assessing when a cough is present based
on an energy threshold being exceeded, then retaining the
information contained within until the cough is detected as
having ended. In the case of overlapping detected events due to
hypersensitivity of multiple energy fluctuations, we will merge
them to form one detected event. Hypothetically, this allows
for cleaner segmentation of variable-length peal coughs.

We begin with iterating through the input audio signal
(signaln where the signal is an array of n amplitudes) by
equally sized temporal slices, where each 50 ms slice is
mapped to an envelope containing the following:

ēv = signaln [slicestart : sliceend]
2 (1)

et =
slicestart

fs
(2)

Where ēv refers to the mean averaged envelopevalue, et
refers to envelopetime, and fs = 44100. We select an
envelopesize of 50 ms to get an accurate segmentation of
the peal cough. The intuition behind this is that there is a
variable 10 to 30 ms of silence between peal epochs, and an
envelopesize < 0.05 would consider this to be the end of the
present cough currently iterated over, with the next envelope
to contain a new cough. This would result in the clipping
problem, where peal coughs are partially clipped, resulting in
a loss of class-discriminative information. We confirmed this
hypothesis through validation experiments on the data.

Next, we compute the noise floor Nfloor of the full input
audio signal in Equation 3 using a specified detection threshold
thresholdpeak = 1.5, selected by extensive validation. The
Nfloor measures the signal created from the sum of all the
noise sources and unwanted signals. We consider the entire
signal to compute this, as the recordings are generally con-
sistent in background noise; we observed this through manual
listening of audio samples, where we found either a lot of noise
across the signal or not so much. It is defined as follows:

Nfloor =

(∑N
i=1 signali

N

)2

· thresholdpeak (3)

We then filter the envelopes above the Nfloor to find the
peaks of the audio signal and refine the event span (total
duration of the audio event) by finding the onset and offset
of the audio segment that contains the peak. This is achieved
by using the detected peak peaktime · fs as a starting point
and stepping forward across the signal (via envelopesize · fs)
until ēv < Nfloor, meaning the onset of the event has been
located. The inverse is then performed by stepping backwards
across the signal until ēv < Nfloor to locate the offset.

We then filter only the events that conform to onsetpeak ≥
onsetvalid where onsetvalid is defined by the following:

signaln [onsetpeak − (timeval · fs)] + thresholdval (4)

Where thresholdval = 6 and timeval = 0.125 (125
ms). This ensures that some moderate background noise with
initially high energy peaks will not be segmented. Both
thresholdval and timeval are selected based on validation.

Percussive peaks contiguous to the signal boundaries are
filtered out. These peaks are observable in audio waveforms
but not audible to the human ear; we consider them as
noise and remove them as such. In addition, we define a
minimum event duration based on physiological parameters,
lengthmin = 0.01 (100 ms), where an accepted biological
event is defined by Equation 5 and anything less is discarded.

∆onset

fs
≥ lengthmin (5)

To handle peal coughs more effectively, we merge any
overlapping events into a single event. This is achieved by
sorting an array of candidate events by their onset, iterating
through the array, and checking whether onsetcurrent ≤
offsetprevious. If false, then the iteration continues; if true,
then the current onset is omitted and the offset related to
that onset joins the previous onset, combining the two events.
This eliminates the hypersensitivity observed in most segmen-
tation algorithms that do not take peal coughs into account.
The resulting array of merged min-length conforming events
(denoted as onsets and offsets) are then combined where
signaln [onset : offset] is a segmented cough or breath.

IV. EXPERIMENTS

In this section, a comprehensive evaluation is performed to
investigate the performance of the proposed algorithm.

A. Data Acquisition and Pre-Processing

We acquire two public cough datasets and one public multi-
modal (cough and breath) dataset to demonstrate the validity
of our proposed model for cough and breath segmentation;
COUGHVID [6], Coswara [5], and Virufy [7].

TABLE I
SUMMARY OF THE THREE EXPERIMENT DATASETS.

Dataset Noise Duration (s) Σ fs (kHz)

COUGHVID Low 8.7 100 48
Coswara (C/B) Moderate 5.8/16.8 100/65 Varies
Virufy High 18.9 16 48

For consistency, we convert all WEBM, OGG, and MP3
files to 16-bit PCM WAV files. Next, we convert samples
to mono-channel and normalise by scaling the amplitudes to
the [-1, 1] range to account for intra-sample differences in
volume. As we found that cough and breath sounds can have
frequency components spread up to 20 kHz (see Figure 1),
we resample the audio to 44.1 kHz, which would include
frequency information up to 22.05 kHz according to the
Nyquist-Shannon theorem without distortion from aliasing.
Note that Coswara has mixed sample rates fs of 48 kHz, 44.1
kHz, and 16 kHz, where 48 kHz is dominant and 16 kHz



Algorithm 1 Event detection and filtering algorithm.
Require: signaln: audio signal, envelopesize: envelope size

thresholdpeak: detection threshold, fs: sample rate,
timeval: validation time, lengthmin: minimum segment length,
thresholdval: validation threshold.

Ensure: segmented signaln: segmented audio signal
1: slices, envelopes, events← List()
2: for slice in Range(0, Length(signaln), (envelopesize · fs)) do
3: slices.append(Tuple(slice, (slice+ (envelopesize · fs))))
4: end for
5: for slice in slices do
6: envelopevalue ←Power(Mean(slicen), 2)
7: envelopetime ← (slice/fs)
8: envelopes.append(Dict(envelopevalue, envelopetime))
9: end for

10: Nfloor ←Power(Mean(signaln), 2) · thresholdpeak
11: detected peaks ←List(envelope for envelope in envelopes

do if envelopes [envelopevalue] > Nfloor)
12: for peak in detected peaks do
13: currenti ← (peak [envelopetime] · fs)
14: step← (envelopesize · fs)
15: while (currenti + step) < (Length(signaln)− 1) do ▷

Note: this while loop is repeated twice to get maxi and mini

16: pasti ← currenti − step
17: futurei ← currenti + step
18: end while
19: maxi ←Length(signaln)− 1
20: events.append(Dict(peak [envelopetime] · fs), onset ←

mini, offset← maxi)
21: end for
22: for event in events do
23: if (signaln [event [peak]] ≥ thresholdval +

(signaln [event [peak]− (timeval · fs)] then
24: filtered events.append(event)
25: end if
26: end for
27: filtered events.sort(key ←lambda i: i [onset])
28: for eventcur in filtered events do
29: eventprev ← filtered events [−1]
30: if eventcur [onset] ≤ eventprev [offset] then
31: eventprev [offset] ←

Max(eventprev [offset] , eventcur [offset])
32: else
33: merged events.append(eventcur)
34: end if
35: end for
36: for event in merged events do
37: if ((event [offset]−event [onset] /fs) ≥ lengthmin then
38: min len events.append(event)
39: end if
40: end for
41: for event in min len events do

return signaln [event [onset] : event [offset]]
42: end for

are outliers. Due to the low prevalence of 16 kHz samples,
these are discarded to prevent distortion from interpolation to
a higher fs. Samples with fs = 44100 we normalise only.

B. Evaluation Metrics

We compute a measure of the strength of the desired signal
relative to an undesired signal, known as the signal-to-noise
ratio (SNR). The SNR can be defined as follows:

SNRdB = 20 · log10
(
Asignal

Anoise

)2

(6)

Where Asignal are the amplitudes of the signal samples
corresponding to biological events of interest (coughs and
breaths), and Anoise are the amplitudes of non-biological
events of no interest, presumed to be ambient background
noise. We compute the SNR where Asignal is the absolute
mean |µ| of the signal and Anoise is the standard deviation σ.
We use this metric to validate our hypothesis that segmented
bioacoustic events will contain less noise than their parent
samples from which they are isolated, as higher SNR scores
are an intuitive indicator of signal quality improvement [16].

The Virufy segmented subset and all child samples where
their parent contains a peal cough in the COUGHVID and
Coswara subsets are manually spot-checked by two human
raters to assess the segmentation quality under noisy condi-
tions. The rating scale is as follows: ‘high quality’ for audio
containing only a clear and complete cough, ‘low quality’ for
audio containing either a partial cough or a full cough with
noise, and ‘discard’ for audio containing no discernible cough.

C. Empirical Results

This section outlines the key results of our experiments on
the COUGHVID, Coswara cough (Coswara-C), and Coswara
breath (Coswara-B) subsets against a state-of-the-art (SOTA)
algorithm COUGHVID (see Section II). For a fair comparison,
we do not test the COUGHVID algorithm on Coswara-B, as
it is clear that this algorithm was designed with only the
cough modality in mind [6]. SNR scores are computed for
the COUGHVID algorithm with the same method as CoBrS.
In the following text, we denote mean signal quality as s̄snr,
mean sample duration as s̄len, and sample size as ssize.

For CoBrS on the COUGHVID subset, s̄snr increased by
775.8% and ssize by 280%. In comparison to the COUGHVID
algorithm, CoBrS s̄snr and ssize were 274.2% and 35.7%
higher, respectively. We compute SNR scores for both positive
and negative samples to analyse class-wise differences in
s̄snr. We found that with CoBrS, class-wise differences in
s̄snr decreased from 98.5% to 3.3%, but only 32.4% for
COUGHVID. We do the same for s̄len, and found that class-
wise differences for CoBrS were reduced from 6.7% to 4.5%,
whereas for COUGHVID, it increased to 15.9%.

For CoBrS on the Coswara-C subset, s̄snr increased by
497.6% and ssize by 250%. In comparison to the COUGHVID
algorithm, CoBrS s̄snr and ssize were 169.3% and 45.8%
higher, respectively. For CoBrS on the Coswara-B subset, s̄snr
increased by 672.7% and ssize by 213.9%. We found that
class-wise differences in s̄snr decreased from 70.8% to 14.3%.

The Virufy dataset includes an unprocessed subset and
a segmented subset produced by their in-house SOTA seg-
mentation algorithm. Their code is unreleased and we were
unable to reimplement the algorithm; therefore, we segment
the unprocessed subset with CoBrS and compare our results
to the Virufy segmented subset. CoBrS achieved a s̄snr 143%
higher than the original samples and 39.8% higher than Virufy.



Fig. 2. Filtered onset detection (CoBrS) vs standard onset detection
(COUGHVID) of peal coughs. (a) peal cough with 6 additional expulsions
after the initial one. (b) 3 peal coughs with varying expulsions. (c) peal cough
and 3-phase cough. (d) 3 standard peal coughs.

We also observed class-wise differences in s̄snr were 124.9%
for Virufy compared to 81% for CoBrS. In addition, the subset
of Virufy segmented coughs generated by CoBrS (n = 199)
was manually spot-checked by two human raters (see Section
IV-B). They found that 88% of samples contained high-quality
coughs despite the Virufy dataset containing the most noise.

V. RESULTS DISCUSSION

Overall, the proposed algorithm demonstrated promising
results in segmentation capability in scenarios with variable
ambient background noise. For example, Coswara had a lower
innate signal quality than COUGHVID by 14.6%, and Virufy
had 43.7% less signal quality than Coswara. Despite the in-
cremental complexity, CoBrS achieved significant to moderate
s̄snr improvement across the board, outclassing current SOTA
methods COUGHVID and Virufy by a wide margin. The
following figures help to illustrate this improvement.

Fig. 3. Filtered onset detection (CoBrS) vs standard onset detection
(COUGHVID) of breaths. (a) nasal, variable pitch, box breathing. (b)
nasal, louder exhalation, cyclic hyperventilation. (c) nasal, variable pitch, box
breathing. (d) oral, louder exhalation, cyclic sighing.

In Figure 2, we can discern the accuracy of our segmentation
method visually for a diverse array of cough types, comparing
our performance to SOTA. Of interest is the repeated neglect
of peal coughs to be isolated by SOTA (see Graphs A & B)
or the commonality of partial isolation (see Graphs C & D),
a problem known as cough hypersensitivity or clipping.

In Figure 3, similar effectiveness is shown for various breath
types; often SOTA are unable to identify shallow breaths
interposed between the voiced phases, whereas CoBrS can
isolate both phases together in the same sample, as desired.

In Figure 4, we showcase an upward trend where a higher
proportion of SNR scores move away from 0, indicating better
signal quality over all datasets, as noise is reduced.

In Figure 5, class-wise differences in s̄len were reduced in
the segmented dataset (6.7% to 4.5%), aligning the distribu-
tions more closely. Contrarily, SOTA increased by 15.9%.

Two human raters performed manual spot-checking on the
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Fig. 4. SNR scores across the three datasets before and after segmentation.

Fig. 5. Class-wise duration distributions before and after segmentation.

COUGHVID and Coswara subsets. In total, 180 segmented
peal coughs (n = 60 parent samples, ≈ 3 coughs per sample)
were analysed and a 94% peal cough segmentation rate was
observed, based on the criteria outlined in Section IV-B.

These results support our previous research [3], [12], where
we proposed a cough segmentation method based on cough
clustering, which we found to address hypersensitivity to
cough-phase energy fluctuations. We proved that segmenting a
training set could improve classification of the minority class
by up to 20% without detriment to the majority class [3].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel segmentation algorithm based on
heuristics derived from physiological assumptions is proposed
to isolate a wide variety of biological acoustic events per-
taining to two respective modalities, cough and breath. Our

empirical, robust human-verified findings, show that CoBrS
eclipses the respective performances of SOTA methods and is
effective at segmentation in low to moderate noise conditions,
simultaneously improving signal quality and retaining high-
frequency information (up to 22.05 kHz) that is often lost in
the segmentation pre-processing stages of other methods.

In the future, we plan to validate the robustness of the algo-
rithm in more diverse settings, such as ambulatory recordings
in hospital wards and on differing pathologies of bioacoustic
samples, i.e. asthma, bronchitis, pneumonia, pertussis, and
influenza. The effects of segmentation methods on the class
imbalance problem should also be explored in detail. Lastly,
we hypothesise that other bioacoustic events of interest, such
as snoring in polysomnography, could benefit from similar
segmentation strategies as we have proposed in this paper.
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