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Abstract—Multimodal models can experience multimodal col-
lapse, leading to sub-optimal performance on tasks like fine-
grained e-commerce product classification. To address this, we
introduce an approach that leverages multimodal Shapley values
(MM-SHAP) to quantify the individual contributions of each
modality to the model’s predictions. By employing weighted
stacked ensembles of unimodal and multimodal models, with
weights derived from these Shapley values (MM-SHAP), we
enhance the overall performance and mitigate the effects of
multimodal collapse. Using this approach we improve previous
results(f1-score) from 0.67 to 0.79.

Index Terms—Multimodal learning, Weighted ensemble, MM-
SHAP, Shapley values, Multimodal collapse, Fine-grained classi-
fication.

I. INTRODUCTION

Multimodal classification is a machine learning technique
which uses multiple data modalities such as image, text, audio,
and spatial data to create an all-encompassing model which
can be used for downstream tasks such as e-commerce product
classification [1]–[3]. Multimodal classification has become a
critical method used in e-commerce product classification of
grocery items (eg: Food & Beverages with text labels and
descriptions) and office supplies (Printer Ink Cartridges in this
instance) and related industries where the representative data
comes in the form of multiple modalities [5]–[7].

Multimodal classification has proved to be very effective
in improving the results of fine-grained product classification
tasks. Still, it can experience multimodal collapse which
degrades the results of multimodal models and inadvertently
affects its performance [9], [15], [16], [22].

Ensemble methods aim to improve the performance of
machine learning models by combining multiple models using
one of these: averaging, boosting, stacking, majority voting or
Bayesian model averaging (BMA) [4], [10], [23], [25].

We focus on the ensemble approach in this paper and
propose a different way of improving the performance and
result of multimodal models by creating a weighted ensemble
of unimodal and multimodal models which uses the calculated
shapley values of each modality in the multimodal model as
weights and training parameters for a meta-model.

The main contributions of this paper are:

1) We introduce a method of combining unimodal and mul-
timodal models using multimodal Shapley values (MM-
SHAP) as weights in the weighted stacking ensemble
method.

2) We create a meta-model and demonstrate its per-
formance on image and text multimodal datasets
(publicly available at https://github.com/multimodal-
research/TAIMD-17k).

3) We demonstrate how multimodal Shapley values (MM-
SHAP) can improve multimodal models used for fine-
grained product classification.

II. RELATED WORKS

In the research work of [24], a Shapley value based methods
called “Shap-CA” was introduced. Their work discussed an
approach which enables both context-text and context-image
pairs alignment. By leveraging the Shapley value concept, it
quantifies the individual contribution of each element within
the set of contexts, texts, and images to the overall semantic
and modality overlaps. This quantitative evaluation is followed
by a contrastive learning strategy that aims to enhance the
interactive contribution within context-text/image pairs while
minimising the influence across these pairs. To further refine
the alignment process, an adaptive fusion module is designed
to selectively combine information from different modalities,
ensuring that only relevant cross-modal interactions are con-
sidered. Their work significantly differs from ours, as it is
estimates the contributions differently and focuses on Shapley
Value-based contrastive alignment.

In another related work by [26], multimodal contributions
are observed and an approach to evaluate individual contribu-
tions per samples using sample-level modality valuation metric
was introduced. This method was analysed to enhance the dis-
criminative capabilities of low-contributing modalities at the
sample level. Their approach essentially involved improving
mulitmodal cooperation by evaluating unimodal contributions
in the multimodal model.
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In agreement to the issue of multimodal collapse we had
previously discussed, the work of [8] discusses the problem
which arises from imbalanced multimodal learning where
multimodal models find it difficult to jointly and correctly
utilise each modalities leading to over-reliance on one of
the modality and degrading multimodal learning performance.
They proposed a new method called “MMPareto”” which aims
to reduce the imbalanced multimodal learning problem.

SHapley vAlue based PErceptual (SHAPE) was proposed
by [27] to quantify the marginal contribution of individual
modalities and the degree of cooperation across modalities in
multimodal models. Using different multimodal datasets on
various tasks, the authors find that multimodal models often
ignore the cooperation across modalities, especially when
one modality dominates. However, when different modalities
are indispensable, the models learn to exploit cross-modal
cooperation, and early fusion is beneficial.

III. METHODS

Weighted ensemble methods are machine learning meth-
ods which combine multiple pre-trained models. A crucial
distinction between weighted ensembles and other ensemble
approaches lies in the introduction of weights [11]. In our
case, we create an ensemble of fine-tuned unimodal models
and multimodal models from previous experiments to compute
the weight elements using the MM-SHAP to determine the
modality contribution of our multimodal model.

In this section, we deconstruct the technical aspects of
our weighted ensemble approach. We introduce the ensemble
architecture, specifically the algorithm employed to combine
predictions from the unimodal and multimodal models. We
then discuss the selection and integration of pre-trained mod-
els, including their modalities (text or image) and the justifi-
cation for their choice. Finally, we explain the weight com-
putation technique that leverages multimodal Shapley (MM-
SHAP) values to determine the contribution of each modality.
Figure 1 visually complements our technical explanations.

A. Fine-tuned/ Pre-trained models

Building upon some of the established performance of
ensemble models in prior research which capitalises on the
strengths of individual models, leading to improved generali-
sation and robustness compared to relying on a single model
[12], we propose to leverage this approach to create a better
and more robust learner. We aim to combine the unimodal
and multimodal models into an ensemble using the proposed
weighted ensemble architecture.

For our experimental evaluation, we utilised the pre-trained
checkpoints of the top-performing models from our previous
studies on multimodal and image-only fine-grained product
classification. These models, respectively, employed a multi-
modal architecture, a transformer (BERT) and a CNN (ResNet)
based approach.

To generate the required inputs for the meta-model, we re-
trieved the logits from previously trained models. We provide
further details about the steps we took below:

1) Multimodal model logits
We load a checkpoint from our CLIP and MultiModal
BiTransformers (MMBT) based multimodal model. This
checkpoint essentially captures the model’s state at a
specific point during training. We then pass the evalu-
ation set through this model. During the forward pass,
the model makes computations on the input data and
generates logits, which are the raw outputs before the
final classification layer applies a function (like softmax)
to convert them into probabilities.

2) Shapley values from the multimodal model
Shapley values are a way to quantify the contribution of
each feature or data modality to a model’s prediction. In
our case, we are interested in understanding how much
the text data and the image data each contribute to the
predictions made by our multimodal model. To achieve
this, we calculate Shapley values using the equation
2. This formula considers all possible combinations
of features (text only, image only, and both together)
and analyses how each feature permutation influences
the model’s predictions. The resulting Shapley values
represent the proportional contribution of each modality
to the final prediction.

3) Stacking Unimodal and Multimodal model logits
The logits from all models (both unimodal and mul-
timodal) and the Shapley values from the multimodal
model are then fed into the meta-model. Additionally,
we incorporate an additional weight parameter within
the meta-model. This weight is directly set to the
computed Shapley value, allowing the meta-model to
consider the relative importance of text and image
information during the final decision-making process.
Essentially, the meta-model can learn to pay more atten-
tion to the modality (text or image) that has a historically
greater influence on the multimodal model’s predictions
according to the Shapley value.

B. SHAP (Shapley Values)

The concept of Shapley values was first introduced in the
work of Lloyd Shapley in 1953, where a proposal was made
for a novel method to quantify the individual contribution of
each player in a collaborative game [13]. This background
was expanded over the years and applied across several fields,
including machine learning. Theoretically, shapley values can
be used to assign a value to each player in a collaborative game
using an estimation of their impact on the overall outcome
which can be achieved by all collaborative players in a group
[14].

More recently, in the efforts to improve the interpretability
of machine learning models, SHapley Additive exPlanations
(SHAP) have emerged as a model-agnostic way of interpreting
how a machine learning model works. This method is built
upon the theoretical foundation of SHapley’s work in 1953 as
explained in the paragraph above. SHAP leverages core game
theory concepts which determine the fair distribution of pay-
offs or contributions amongst players in a cooperative game.
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Essentially, it quantifies the individual contribution of each
feature within a model to its overall prediction or performance.
Compared to other methods such as LIME: Local Interpretable
Model-Agnostic Explanations, SHAP works for more complex
models and provides a better-performing framework when it
comes to the interpretability of machine learning models [17],
[18].

As expressed in Equation (1), the Shapley value for a player
represents the average of its marginal contributions to the value
of all possible predecessor sets. This average is weighted based
on the number of players in each predecessor set.

ϕi =
∑

S⊆M\{i}
ρ(m, |S|)︸ ︷︷ ︸
weight factor

(v(S ∪ {i})− v(S))︸ ︷︷ ︸
marginal contribution

(1)

SHapley Additive exPlanations (SHAP) is expressed in
Equation (2) below. Where g(z′) denotes the explanation
model and simplified features (or coalition vector) respectively.
ϕjzj denotes the feature attribution for feature j and z′

describes coalitions in the coalition vector.

g(z′) = ϕ0 +
M∑
j=1

ϕjz
′
j (2)

Our exploration of SHapley Additive exPlanations (SHAP)
in this section establishes a theoretical foundation for the
subsequent exploration of MM-SHAP. It is essential to dis-
cuss this foundation as MM-SHAP directly leverages the
fundamental principles of Shapley values/ SHAP and this is
comprehensively discussed in the next section.

C. MM-SHAP

MM-SHAP, a performance agnostic method of estimat-
ing the multimodality score of multimodal models based
on Shapley values, can be used to quantify the proportion
of individual contribution of each modality in multimodal
models [19]. MM-SHAP provides a way to measure each
modality’s influences on the model’s predictions, regardless
of the model’s overall accuracy.

The MM-SHAP method, introduced by [19], was specifi-
cally designed for analysing vision (image) and language (text)
multimodal models, which aligns well with the focus of our
work. This shared foundation in the analysis of individual con-
tribution in image-text modality models makes their research
particularly relevant to our solution exploration. Additionally,
they discussed 3 ways of applying MM-SHAP in their work
as listed below:

1) Sample-level
2) Dataset and model level
3) Measuring fine-tuning effects
Building on the work presented in [19], we can utilise

MM-SHAP to quantify the impact of each modality within a
multimodal model. Equations 3 and 4 define the calculations
for text and image contributions, respectively.

ΦT =
PT∑
j

|ϕj | (3)

ΦI =
PI∑
j

|ϕj | (4)

where ΦT & ΦI represent the percentage of the final prediction
that can be attributed to the textual and image modalities,
respectively. These values are calculated by summing the
absolute Shapley values for each modality.

Based on the established foundation, we calculate the in-
dividual contributions of each modality in our multimodal
model. These contributions are then used to assign weights
to the different components within the meta-model of our
weighted ensemble system, as depicted in Figure 1. The
estimated multimodal contribution can be positive, indicating
they enhance the model’s prediction, negative, meaning they
weaken it, or zero, signifying no significant impact [20].

D. Meta Model

In ensemble-based architectures, meta-models are typically
trained on the raw outputs from the base learners (in our case,
image unimodal, text unimodal, and image-text multimodal)
along with their corresponding true targets [21]. This training
process allows the meta-model to implicitly learn how to
best combine these individual predictions for a more robust
final output. However, unlike traditional approaches, we have
opted to introduce a different approach by incorporating an
explicit weight parameter into our meta-model architecture.
This weight parameter goes beyond the implicit weighting
learned through standard meta-model training. Instead, it al-
lows the model to directly assign importance scores based
on each modality (text or image). We leverage the power
of MM-SHAP (explained in Section III-C) to estimate these
weights effectively. By incorporating this explicit weighting
mechanism, we aim to empower the meta-model to make a
more nuanced assessment of each base learner’s contribution,
ultimately leading to a potentially more accurate and reliable
final prediction.

1) Weights
Our proposed weighted stacked ensemble incorporates a
novel element: a weight parameter. This tailored weight-
ing formally expressed in Algorithm 2, empowers the
model to effectively leverage the strengths of individual
modality contributions in the base learners.

2) Architecture
To provide a comprehensive understanding of our pro-
posed architecture, we can break it down into five core
components followed by a dedicated prediction layer, as
seen in Figure 1. We also present a detailed step-by-step
breakdown of the entire process in Algorithm 2.

1: Input: Training data D, validation data Dv , testing
data Dt

2: Output: Ensemble model prediction ŷ
3: Split D into training set Dtr and validation set Dv

4: for l ∈ {1, . . . , L} do
5: Train base learner l on Dtr (e.g., unimodal and

multimodal models)
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Fig. 1. An architecture depicting the weighted ensemble which combines unimodal and multimodal models, using MM-SHAP to calculate modality
contributions.

6: end for
7: for i ∈ Dv do
8: for l ∈ {1, . . . , L} do
9: Generate meta-feature zli from base learner l

prediction on i
10: end for
11: end for
12: Train stacking model (meta-learner) Ms on

{zi, yi}i∈Dv (e.g., feed-forward networks)
13: Determine weights wl for base learners (using MM-

SHAP to estimate weights based on multimodal
contributions)

14: for i ∈ Dt do
15: ẑi =

∑L
l=1 wl· predict(l, i)

16: (classification) ŷ = argmaxkP (y = k|ẑi)
17: end for
18: Return: ŷ

3) Training
We trained the weighted stacked ensemble on two
NVIDIA RTX 4090 GPUs, each equipped with a dedi-
cated 48GB of memory. Details of the configuration and
hyperparameters can be found in Table I.

TABLE I
CONFIGURATION AND HYPER-PARAMETER FOR THE WEIGHTED STACKED

ENSEMBLE

Feature Value
Image encoder CLIP

Image encoder size 288
Number of image embeddings 4

Text encoder BERT
Token Sequence Length 120

Loss function Cross Entropy
Optimiser SGD

Learning rate 1e-4
Input dimension 93

Hidden dimension 512
Output dimension 31

Epoch 50,000

IV. EXPERIMENTS

In this section, we discuss the experimental setup designed
to evaluate the performance of the weighted ensemble meth-
ods expounded in Section III. As mentioned previously, we
performed all experiments using the “TAIMD-17k” text and
image multimodal dataset. This dataset is a suitable represen-
tation of our problem domain, as it is designed for fine-grained
classification and contains both image and text components,
making it well-suited for multimodal learning applications.

Furthermore, we incorporate the previously trained uni-
modal models, which extract crucial features from either
the textual descriptions (text-based) or the corresponding
product images (image-based). Additionally, the image-text
multimodal models, trained to exploit the inherent relationship
between these modalities, are integrated into the ensemble con-
struction process. To determine the relative influence of each
model within the ensemble and guide the weight assignment
process, the pre-computed multimodal Shapley values, which
capture the marginal contribution of each model to the overall
ensemble performance are utilised.

Finally, a meta-model, a higher-order model trained on the
stacked logits and MM-SHAP values of the unimodal and
multimodal models within the ensemble, will be introduced.
This meta-model plays a pivotal role in our approach, serving
as a final classification layer or a mechanism for feature
extraction for the weighted ensemble. By analysing the per-
formance of the weighted ensemble on our dataset, we aim
to assess its ability to outperform the constituent unimodal
and multimodal models across various performance metrics
(f1-score, recall & precision). The results are presented and
critically evaluated to establish the viability and potential
advantages of the weighted ensemble approach for fine-grained
product classification tasks.

A. Unimodal models

To build upon the previous work, we employ the text and
image unimodal models as the foundation for our weighted
ensemble method. These pre-trained models act as our base
learners. We leverage checkpoints from the prior experiments
to generate prediction scores, which are then fed as inputs into
the ensemble architecture described in Algorithm 2. For the
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text unimodal model, we fine-tuned BERT and for the image
unimodal model, we fine-tuned ResNet-152.

B. Multimodal model

For the multimodal model, we train an architecture based on
MMBT and CLIP using the image and text dataset (TAIMD-
17k). We utilise the checkpoints from this multimodal model
to generate predictions which we use as inputs in the weighted
ensemble method. A breakdown of the process is detailed
below:

1) Pre-processing
To prepare the image and text data for the multimodal
model, we applied suitable preprocessing techniques.
The text was tokenized using the BERT tokenizer, and
images were divided into patches using CLIP. To cap-
ture a richer representation of the input, we generated
embeddings for both the processed text and image
data. Additionally, we create a dictionary containing
the following key-value pairs: input ids, input modal,
attention mask, start tokens and end tokens.

2) Load checkpoint
We load a checkpoint file containing the trained weights
and biases from the multimodal model. This process
essentially restores the model’s learned parameters.

3) Generate Prediction
Once the preprocessed data and checkpoint are loaded,
we activate the multimodal model. The processed image
and text data are fed through the model’s architecture,
triggering computations across its interconnected neural
layers. This activation process ultimately results in the
final output layer generating a set of prediction scores.
These scores represent the model’s confidence level for
each possible category for the input. These scores then
become the new input for the meta-model, which will
be discussed in the following section.

C. Weighted ensemble model

Our approach utilises a meta-model architecture, detailed
in Figure 1. This model was extensively trained for 50, 000
epochs using the specific configuration and hyper-parameters
outlined in Table I. The meta-model plays a critical role in
constructing the weighted ensemble.

V. RESULT

Having conducted the experiments outlined previously, this
section discusses an evaluation of the derived results. We
establish comparisons between our findings and those of prior
experiments, utilising the same established evaluation metrics:
F1-score, precision, and recall. To facilitate a comprehensive
understanding of the results, visual summaries are presented
in Figures 2 & 3. Additionally, we present our final results
in Table II, comparing the performance of the unimodal,
multimodal and weighted ensemble methods.

TABLE II
AN EVALUATION OF THE PERFORMANCE OF UNIMODAL, MULTIMODAL,

AND WEIGHTED ENSEMBLE APPROACHES.

Method Precision Recall F1-Score
Unimodal (ResNet-152) 0.70 0.61 0.59

Multimodal (MMBT + CLIP) 0.75 0.71 0.67
Weighted Ensemble 0.80 0.82 0.79

Fig. 2. This graph illustrates the model’s learning progress over time. The x-
axis represents the number of training epochs, while the y-axis indicates the
percentage of correctly classified training samples. The curve exhibits an upward
trend, suggesting that the model is learning effectively and becoming more
accurate.

Fig. 3. The x-axis typically represents the number of training epochs, while
the y-axis indicates the calculated loss value. The curve exhibits a downward
trend which suggests that the model is learning effectively and minimising its
errors.

VI. CONCLUSION & FUTURE WORK

This research introduces a new approach which addresses
multimodal collapse and improves multimodal product classi-
fication through the use of a weighted ensemble model using
multimodal shapley values. This model excels by combining
the strengths of individual unimodal (image-only or text-only)
models and multimodal models that consider both data types
(image and text). The key lies in MM-SHAP values, which
quantify the contribution of each data modality (image and
text) to the classification process. By leveraging these values to
calculate weights for each model, we create a more informed
ensemble. Furthermore, the MM-SHAP values themselves
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are incorporated as additional features during the training
of a meta-model, further enhancing its ability to distinguish
between products.

Our experiments on the TAIMD-17k multimodal product
datasets containing both images and text demonstrate signifi-
cant improvements in F1-score, recall & precision compared
to other methods (text based unimodal, image based unimodal
and text and image multimodal models).

It is crucial to acknowledge the computational cost associ-
ated with this weighted ensemble approach. Calculating MM-
SHAP (Multimodal SHapley Additive exPlanations) values
and training multimodal models can be computationally in-
tensive, requiring substantial processing power and memory
resources. To address this challenge, future research should
focus on efficiently optimising the method. Here are some
potential avenues to explore:

1) Approximation Algorithms
We can investigate incorporating approximation algo-
rithms to achieve a balance between accuracy and com-
putational efficiency. These algorithms might provide an
acceptable level of accuracy while significantly reducing
processing time.

2) Parallelisation
Leveraging parallel computing techniques can signifi-
cantly accelerate the computation of MM-SHAP values.
By distributing the workload across multiple processors
or GPUs, we can achieve faster processing times without
compromising accuracy. This would require restructur-
ing the code to be compatible with parallel execution
environments.

By focusing on these optimisation techniques, we can
mitigate the computational bottleneck associated with this
weighted ensemble approach while maintaining the gains in
classification accuracy. This will ultimately lead to a more
practical and scalable solution for real-world applications and
adoption.
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