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Abstract. Accurately identifying a household demographic profile based
on its television viewing pattern is important for content personalisa-
tion, targeted advertising, and programme design. By understanding who
is watching what and when, broadcasters can tailor content to match
viewers’ interests. Although machine learning can predict household at-
tributes, uncertainty is often high due to overlapping viewing patterns
across demographic groups, shared device usage, and limited samples.
Thus, this paper applies the Conformal Prediction framework to provide
an uncertainty measure for machine prediction. We also introduce a new
nonconformity score to improve prediction efficiency. Experiments on a
large-scale, imbalanced TV dataset show that our method achieves an
average prediction set size of 1.18 and an 82.8% singleton rate at 95%
confidence level, outperforming conventional nonconformity measures in
terms of both reliability and efficiency.

Keywords: Conformal Prediction - Nonconformity Measure - TV house-
hold classification

1 Introduction

In recent years, Al has become a powerful tool for extracting actionable in-
sights from user behaviour across digital and traditional media platforms [12].
In the context of linear television, accurate audience segmentation and demo-
graphic profiling are essential for content personalisation, targeted advertising,
and strategic programming decisions. In our previous work [6], we developed a
machine learning framework capable of predicting household demographics based
on viewing behaviour. However, the framework lacked a quantifiable measure of
confidence in its predictions—a critical limitation for real-world deployment [3].
The absence of confidence estimates is particularly problematic in applica-
tions where interpretability and decision reliability are essential. Broadcasters
and advertisers must often balance precision with uncertainty, especially when
dealing with heterogeneous audiences and imbalanced data distributions. In such
settings, producing well-calibrated, interpretable prediction sets—rather than
single-label outputs—improves audience targeting and scheduling decisions.
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Conformal Prediction (CP) addresses the challenge of uncertainty in classi-
fication by enabling models to output prediction sets—collections of likely la-
bels—instead of committing to a single prediction. By offering formal guarantees
on coverage (e.g., ensuring the true label is included in the set with high proba-
bility), CP allows practitioners to control the risk of error in a transparent and
interpretable way [13,20]. These properties make CP a powerful tool for building
more reliable machine learning systems.

At the core of CP lies the Nonconformity Measure (NCM), which quantifies
how ‘atypical’ a new instance is relative to previously seen data. While a range
of NCMs—based on predicted probabilities, rankings, or uncertainty—are com-
monly used, they are typically applied uniformly across instances, disregarding
instance-specific difficulty or context [4]. This uniformity can lead to suboptimal
performance. Some NCMs may yield efficient prediction sets for well-classified
instances but fail on ambiguous or rare cases. To address this, we introduce a
novel calibration-aware NCM that integrates instance-level accuracy with global
model calibration, enabling more robust and context-sensitive prediction sets.

The key contributions of this paper are as follows:

— We propose a calibration-aware alternative to standard NCMs, combining
local prediction accuracy with global reliability, and evaluate its performance
under varying conditions.

— We empirically evaluate our method on real-world data across a set of met-
rics designed to assess both validity and efficiency. Validity refers to the
probability that the prediction set contains the true value, while efficiency
relates to the size of the prediction set.

The remainder of the paper is organised as follows. Section 2 reviews relevant
work on demographic inference and conformal prediction. Section 3 formalises
the household classification task and motivates the need for uncertainty-aware
predictions. Section 4 introduces the conformal prediction framework and re-
views key nonconformity measures. Section 5 presents our proposed Hybrid
Calibration Score (HCS). Section 6 details the experimental design, dataset,
evaluation metrics, and results. Finally, Section 7 concludes and outlines future
directions.

2 Related Work

Demographic inference from user behaviour is a long-standing challenge in au-
dience research, with applications in marketing, recommendation systems, and
audience measurement. Prior studies have drawn on diverse data sources—such
as web browsing logs, mobile app usage, and television viewing patterns—to
predict attributes like age, gender, household composition, and interests [15,19].
Approaches have evolved from rule-based heuristics to supervised learning meth-
ods, including decision trees, random forests, and deep neural networks.
Television viewership, in particular, has been a valuable source for household
profiling. Our prior work advanced this area by applying supervised learning to
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large-scale, first-party linear TV data to predict household demographics with
high accuracy [6]. However, these models lacked mechanisms to quantify uncer-
tainty, limiting their interpretability and reliability in deployment.

CP addresses this limitation by producing statistically valid prediction sets
under minimal distributional assumptions [20]. While CP has gained traction
in areas such as medical diagnostics [18], recommender systems [17], and nat-
ural language processing [9, 10], its use in behavioural media analytics remains
limited.

Most CP methods rely on conventional NCMs applied uniformly across in-
stances, ignoring instance-specific difficulty or uncertainty [3,11]. Recent work
alms to improve contextual sensitivity through instance-aware NCMs. Seedat
et al. [16] integrate CP with self-supervised learning (SSL), using errors from
an auxiliary task as uncertainty signals. Bellotti [5] proposes a differentiable CP
framework that optimises task-specific loss functions to produce tighter, context-
aware prediction intervals. Similarly, Amoukou and Brunel [2] use Quantile Re-
gression Forests (QRFs) to generate localised intervals by weighting calibration
residuals based on feature-space similarity.

These advances reflect a broader shift toward adaptive, learnable NCMs that
go beyond global heuristics. However, many require task-specific adaptations,
auxiliary training signals, or model-dependent architectures. In contrast, we ex-
plore model-agnostic alternatives that incorporate uncertainty and calibration
directly into the NCM, without modifying the underlying learning pipeline.

Unlike prior approaches such as SSL-based CP [16] or differentiable CP [5],
which rely on auxiliary training objectives or architectural changes, the method
proposed in this paper is fully model-agnostic. It operates directly on model
output probabilities and can be applied without retraining or internal access to
the model-—making it particularly suitable for deployment in production settings
or black-box environments.

3 Demographic Prediction Problem

We address the task of predicting household demographics from patterns of TV
viewing behaviour—a challenge especially relevant in linear TV, where demo-
graphic data is often unavailable but vital for audience segmentation, content
scheduling, and advertising.

Let X denote the space of behavioural features from first-party TV consump-
tion data, and ) a finite set of six demographic classes representing distinct
stages in the household life cycle (e.g., ‘Only middle-aged adults’, ‘Seniors’; see
Table 1). Each instance consists of a feature vector z; € X and a label y; € ).
The goal is to learn a classifier f : X — ) that generalises to new households.

Prior work shows that supervised models can classify these categories with
high accuracy using features like time-of-day activity and content preferences [6].
However, they yield single-label predictions without uncertainty—limiting their
reliability when viewing patterns are noisy or ambiguous.
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To overcome this, we apply Conformal Prediction (CP). CP augments any
base classifier to produce calibrated prediction sets I'(x) C ) that contain the
true label with a user-specified confidence level (e.g., 95%). These prediction
sets deliver calibrated uncertainty estimates, especially useful for ambiguous or
underrepresented cases.

4 Conformal Prediction Background

Let X denote the input space and ) the output (label) space. Given a dataset
of n i.i.d. examples,

Zl:n - {(x17y1>,' ) (mnayn)} C A" x yn,

CP provides a framework for constructing prediction sets I'(z,4+1) C Y for a
new input x,41 € X, such that the true label y,+1 € Y is included with a
pre-specified probability 1 — «:

P(yny1 € I'wpy1)) 21— a,

where a € (0, 1) is the user-defined significance level. This guarantee holds under
the assumption of exchangeability, which only requires that the joint probability
distribution of n examples does not change when the order of those examples is
changed.

4.1 Nonconformity Measure (NCM)
A core component of CP is the Nonconformity Measure (NCM),

A:Z"x Z = R,

which assigns a scalar score. Given a nonconformity measure (A4,11) and a bag
121, ..., zn] of m training examples, we can compute the nonconformity score
ai(zi, i) = Ant1(121, -0y Zic1, Zit1s oo Zn+1), 2i) indicating how atypical each
pair z; = (x;,y;) is relative to the training data of n examples in the bag. In ICP,
this score is computed using the trained model and applied across calibration
and test instances.

The choice of NCM is critical [14], as it directly influences the size, informa-
tiveness, and adaptiveness of prediction sets. Broadly, NCMs can be categorised
as either model-dependent or model-agnostic [1]:

— Model-dependent NCMs rely on internal model outputs such as predicted
probabilities, confidence scores, or learned embeddings. Examples include
probability-based scores (e.g., log loss, hinge loss), ranking-based metrics
(e.g., margin, gap), and uncertainty measures (e.g., entropy).

— Model-agnostic NCMs do not depend on the internal structure of the model.
Instead, they use external features such as distances in input or embedding
space (e.g., KNN distance, embedding distance), offering greater flexibility
but often at the cost of tighter model alignment.
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For clarity, we group commonly used NCMs into four operational categories:
probability-based scores, ranking/confidence scores, uncertainty metrics, and distance-
based scores.

a) Probability-Based Scores These scores use predicted probabilities di-
rectly:

— Hinge Loss: a(z,y) = 1 — p(y|z)
— Log Loss: a(z,y) = —log p(y|x)

— Brier Score: )
a(z,y) = > (p(/|x) = 1gy—yy)
y' €Y
Log Loss and Brier Score are both proper scoring rules, rewarding accurate
and well-calibrated probability estimates.

b) Ranking/Confidence Scores These reflect a model’s confidence or ranking
of labels:

— Margin: a(z,y) = p(y1|x) — p(y2|x), where y; and yo are the top two pre-
dicted labels and y1,y2 € ).
— Gap: a(z,y) = p(y1]z) — p(y|x), where y; is the top prediction.

c) Uncertainty Metrics These assess overall uncertainty in the prediction:

— Entropy: a(z,y) = — Zyley p(y'|z) log p(y'|z)

d) Distance-Based Scores These quantify instance deviation in feature space:

— Embedding Distance: a(z,y) = ||¢(z,y) — u||, where ¢(z,y) is a learned
embedding and g is the mean embedding over the calibration data.

~ KNN Distance: a(z,y) = £ Y0, _ |z — o

5 Hybrid Calibration Score (HCS)

Conventional NCMs typically focus on local prediction properties, such as per-
instance correctness or margin, but often neglect global model calibration. To
tackle this, we propose a composite score that integrates both instance-level
accuracy and global calibration quality.

The Hybrid Calibration Score (HCS) combines the Brier Score and Log
Loss—both proper scoring rules applied to individual instances—with the Ez-
pected Calibration Error (ECE), a global calibration metric computed once over
the calibration set, as introduced by Guo et al. [7]. The weights a, 3,7 € R
determine the contribution of each component:
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a(z,y) = - Brier(x,y) + 8 - LogLoss(x,y) + v - ECE, (1)

We optimise the HCS weights using Bayesian optimisation with Gaussian
Processes, implemented via gpminimize from the scikit-optimize library.
The objective penalises both large prediction sets and coverage violations rel-
ative to the target confidence level. To ensure interpretability, the weights are
constrained to form a convex combination and renormalised at each step.

The search space for the individual weights is defined over the simplex:

a,B,7€[0.0,1.0] subject toa+B8+~vy=1

We run up to 50 evaluations, starting from 10 random initialisations, which
provides a practical trade-off that enables reliable convergence.

To check robustness, we repeat the optimisation across five different calibra-
tion/test splits. The resulting weights remain consistent across folds, and perfor-
mance in terms of coverage and average prediction set is stable—suggesting the
method is not overfitting to any particular split. We also apply early stopping if
improvements plateau and include a regularisation term to prevent over-reliance
on any single component (e.g., Brier alone). These safeguards reduce the risk of
overfitting and improve robustness across data splits.

Expected Calibration Error (ECE) The Ezpected Calibration Error (ECE)
quantifies the discrepancy between predicted confidence and observed empirical
accuracy across varying confidence levels. Specifically, predicted probabilities are
partitioned into n equally spaced bins. For each bin B;, we compute:

— acc(B;): the empirical accuracy in bin B;,
— conf(B;): the average predicted confidence in bin B;.

The ECE is defined as:

ECE = Z “Ji’:' -lace(B;) — conf(B;)| (2)
=1

where |B;| is the number of samples in bin ¢, and N is the total number of
samples. The absolute difference ensures that both overconfident and undercon-
fident predictions contribute positively to the error.

An ideally calibrated model satisfies acc(B;) = conf(B;) for all bins i, result-
ing in ECE = 0. Higher ECE values indicate poorer calibration.

Within the proposed HCS, ECFE acts as a shared global regularisation term
that complements the instance-wise components. While the Brier Score and Log
Loss focus on individual prediction quality, ECE enforces alignment between
predicted confidence and actual correctness at the population level, promoting
probabilistically trustworthy outputs.
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6 Empirical Results

This study builds on prior work applying machine learning to classify house-
holds by television viewing behaviour [6]. Demographic labels were heuristically
derived from business rules and external market insights. Though approximate,
they capture key behavioural patterns across household types.

The dataset comprises 19,386 instances and exhibits a pronounced class im-
balance (Table 1). Categories such as ‘Only middle-aged adults’ and ‘Seniors’
are overrepresented, while others—such as ‘Couples with young kids’—are rare.
This skew poses challenges for both classification and CP, which depends on well-
calibrated confidence scores. The dataset along with detailed documentation are
publicly available at https://github.com/carrenyo/TV-Viewer-Demographics
-Machine-Learning.

Table 1: Household Classification Distribution.

Household Classification Num of Devices Percentage
Couple with young kids (0-8 years) 143 0.74%
Couple with teenagers (9-17 years) 1,514 7.81%
Couple with adult children (18+ years) 3,567 18.39%
Only young adults (18-35 years) 3,550 18.30%
Only middle-aged adults (36+ years) 6,985 36.02%
Seniors (elderly/retired adults) 3,627 18.74%

To mitigate this imbalance, we applied stratified sampling to preserve class
distributions when splitting the data, aligning with findings that the size of the
calibration set significantly impacts the validity of conformal prediction [3].

Among the models evaluated in our previous work—Random Forest, K-
Nearest Neighbours, and Gradient Boosting—we selected Random Forest as
the primary classifier due to its balanced performance across demographic groups,
as well as its stability and reliability during cross-validation.

6.1 Evaluation Metrics

To assess the performance of the conformal predictors, we use a set of widely
adopted metrics [8] that jointly evaluate the validity and efficiency of the pre-
diction sets:

— Coverage: The proportion of test instances for which the true class is in-
cluded in their prediction set. A conformal predictor is considered valid if its
empirical coverage aligns with the target confidence level.

— Average Prediction Set Size (APS): The mean number of labels in
the prediction sets. Lower values indicate more efficient and informative
predictions.
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— Singleton Rate (OneC): The percentage of test instances for which the
prediction set contains exactly one label. A higher singleton rate reflects the
model’s ability to make confident, and unambiguous predictions.

6.2 Experimental Setup

We evaluate the conformal prediction framework on the household classification
task using a Random Forest classifier. The dataset is split into 60% training,
30% calibration, and 10% test sets, with stratified sampling to preserve class
distributions. Results are averaged over five independent runs with different
random seeds (13, 25, 45, 50, 56) to ensure robustness.

Confidence Levels. Performance is evaluated across a range of significance levels
from 0.01 to 0.25, corresponding to confidence levels from 99% to 75%. This
range reflects practical trade-offs between reliability and informativeness. Low
confidence levels are generally too permissive for risk-sensitive applications and
are excluded from consideration.

Nonconformity Measures. We evaluate four nonconformity measures: Hinge Loss,
Gap, Brier Score, and our proposed Hybrid Calibration Score (HCS). These cover
a range of scoring strategies introduced in Section 4.1, from confidence-based to
calibration-aware. The selection reflects both diversity and empirical relevance;
other measures, such as Entropy and Distance-Based Scores, were excluded due
to poor decisiveness or limited compatibility with our model setup.

Implementation. All experiments are implemented in Python. Model training
and prediction use scikit-learn. To enable flexible experimentation, we devel-
oped a lightweight wrapper that mimics the mapie API, extending support to
custom nonconformity measures not included in the original library.

6.3 Empirical Performance

This section presents empirical results for four NCMs evaluated. Performance
is assessed using three metrics: Coverage, Average Prediction Set Size (APS),
and Singleton Rate (OneC). Table 2 summarises results at a significance level of
a = 0.01, corresponding to a 99% confidence level. All metrics are reported as
mean and standard deviation across five random seeds to account for variability.

As shown in Table 2, all NCMs achieve near-nominal coverage at the 99%
confidence level. Hinge Loss yields the highest mean coverage (99.32%) with
minimal variance but produces relatively large prediction sets (APS = 1.64)
and a moderate singleton rate. Gap and Brier Score offer comparable coverage
(99.24% and 99.21%), though with larger prediction sets and slightly lower de-
cisiveness. In contrast, HCS achieves the smallest prediction sets (APS = 1.55)
and the highest singleton rate (55.19%), indicating greater efficiency and confi-
dence, despite a slight drop in coverage (98.99%). Overall, HCS offers the best
trade-off between reliability and informativeness.
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Table 2: Performance Comparison of NCMs at o = 0.01.
Coverage (%) APS OneC (%)
NCM Mean Std  Mean Std Mean Std
Hinge Loss 99.32  0.08 1.64 0.04 49.23 2.95

Gap 99.24  0.28 2.74 0.06 54.30 1.46
Brier Score 99.21 0.29 2.50 0.08 54.78 1.67
HCS 98.99  0.17 1.55 0.04 55.19 2.71

While these results are promising at a fixed confidence level, a key question
remains: do these trends hold across a broader range of confidence levels? To
explore this, we extend the analysis from 99% down to 75% confidence and first
assess whether each NCM satisfies the coverage guarantees required by CP.

For each confidence level, we compute the empirical coverage and assess
whether it meets the expected reliability. A method is classified as:

— Compliant if the empirical coverage exceeds the lower bound of a one-sided
99.99% confidence interval by at least 0.004;

— Marginal if the empirical coverage lies within 0.004 above the lower bound;

— Non-compliant if it falls below the lower bound.

The lower bound is computed using the normal approximation as:

1_
Lower CI bound = (1 — «) — 3.719 - ﬂ

(3)
where « is the significance level and n is the number of test instances.
Figure 1 presents the empirical coverage achieved by each NCM across a

range of confidence levels. All methods closely follow the ideal calibration curve,

demonstrating strong overall calibration. HCS tends to produce slightly conser-
vative coverage at lower confidence levels. As confidence increases, its coverage
aligns more closely with the nominal rate and occasionally dips just below it,
yet remains within strict compliance bounds. In contrast, Hinge Loss, Gap, and

Brier Score consistently maintain compliant coverage across all evaluated levels.
These results confirm that all methods uphold the theoretical guarantees of

conformal prediction.

Although HCS occasionally dips just below the nominal coverage at the
highest confidence levels, this behaviour reflects a trade-off inherent in its de-
sign. By optimising for smaller prediction sets and higher singleton rates, HCS
introduces a mild tolerance for under-coverage in ambiguous cases—especially
those with high class overlap or low model confidence. This is a common effect of
prioritising efficiency in nonconformity measures. Potential mitigations include
conservative calibration adjustments (e.g., applying a small quantile shift) or
incorporating temperature scaling [7] to improve probability calibration before
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Fig. 1: Empirical Coverage vs. Nominal Confidence Level.

applying conformal prediction. These adjustments could further reduce under-
coverage without compromising the decisiveness that HCS offers, and represent
promising directions for future work.

Efficiency Analysis. With coverage compliance verified, we now analyse the
efficiency of each NCM in terms of prediction set size and the frequency of
singleton predictions.

Figure 2 shows the performance of various NCMs across confidence levels,
using Average Prediction Set size (APS, top) and Singleton Frequency (OneC,
bottom). HCS consistently yields the smallest prediction sets, indicating superior
efficiency. While Hinge Loss performs similarly at lower confidence levels, its
efficiency drops as confidence increases. Both Gap and Brier Score exhibit a
sharp rise in APS beyond 95%, with Gap being the least efficient at 99%.

The bottom plot complements this with the OneC' metric—the proportion of
singleton prediction sets—which reflects decisiveness. All methods peak around
89% confidence, where the balance between reliability and informativeness is
most favourable. Hinge Loss achieves the highest OneC at lower confidence lev-
els, reflecting aggressive set reduction, but suffers the steepest decline beyond
94%, falling below all other methods at high confidence levels.

By contrast, HCS begins more conservatively—producing fewer singletons
at low confidence—but achieves a higher OneC from 94% onward. This sug-
gests that while Hinge Loss is more decisive at relaxed thresholds, HCS remains
effective under stricter confidence requirements. Gap and Brier Score briefly
outperform HCS, but degrade more rapidly as confidence increases.

Together, these results highlight the strength of HCS as a well-balanced
NCM: it combines high efficiency (low APS) with robust decisiveness
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Fig.2: APS and OneC Across Confidence Levels.

(high OneC) across a wide confidence range. Compared to the other baselines,
Hinge Loss delivers the second-best efficiency but loses decisiveness under high-
confidence constraints. Brier Score offers a more stable middle ground, maintain-
ing better OneC than Gap, which—despite peaking highest near 89%—becomes
the least efficient option as confidence increases.

To further assess the performance of the two best NCMs in different demo-
graphic groups, we compare Hinge Loss and HCS across household categories
at a = 0.01 (99% confidence). Table 3 summarises coverage, APS, and OneC.

HCS consistently yields smaller prediction sets and higher singleton rates
across all categories, confirming its superior efficiency and decisiveness. The dif-
ference is most pronounced in classes with greater uncertainty—such as ‘Cou-
ple with young kids’—which remain challenging for both NCMs, with coverage
falling notably below the target. In these cases, Hinge Loss shows a steeper de-
cline in OneC. These findings align with the overall analysis, confirming that
HCS offers more stable and efficient performance across diverse household cat-
egories.
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Table 3: Per-Class Performance Comparison of Hinge Loss and HCS at o = 0.01.

Coverage (%) APS OneC (%)
Category Hinge (std) | HCS (std) Hinge (std) | HCS (sta) Hinge (std) | HCS (std)

Couple w/ adult children 98.26 (0.46) | 97.42 (0.83) 2.26 (0.06) | 2.10 (0.08) 11.43 (2.56) | 19.16 (3.97)
Couple w/ teenagers 98.54 (0.55) | 98.01 (0.81) 2.25 (0.06) | 2.11 (0.05) 12.32 (2.59) | 19.74 (3.58)
Couple w/ young kids 94.29 (3.19) | 94.29 (3.19) 2.69 (0.28) | 2.60 (0.19) 2.86 (3.91) | 4.29 (3.91)

Only middle-aged adults  99.77 (0.16) | 99.63 (0.26) 1.34 (0.04) | 1.28 (0.04) 66.92 (4.09) | 72.42 (3.35)
Only young adults 100.00 (0.00) | 100.00 (0.00) 1.63 (0.04) | 1.53 (0.04) 37.30 (4.41) | 46.93 (4.26)
Seniors 99.34 (0.31) | 98.95 (0.45) 1.31 (0.05) | 1.28 (0.05) 81.16 (3.16) | 82.26 (2.91)

7 Conclusions and Future Work

This paper applies Conformal Prediction to demographic classification from tele-
vision viewership data, addressing the need for reliable confidence estimates in
audience segmentation. We propose the Hybrid Calibration Score (HCS),
a nonconformity measure combining instance-level accuracy with model calibra-
tion. Experiments on a large, imbalanced dataset show that HCS achieves strong
efficiency while satisfying coverage guarantees across diverse confidence levels.

Future work includes extending HCS to multi-label and regression tasks, and
exploring adaptive weighting in place of fixed scoring. Another direction is to
evaluate HCS in high-stakes domains—such as healthcare, finance, or market-
ing—where calibrated uncertainty is critical.

Furthermore, we plan to investigate calibration refinement techniques (e.g.,
temperature scaling or conservative quantile adjustments) to further reduce the
minor under-coverage observed at high confidence levels, while preserving the
efficiency gains demonstrated by HCS.
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