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Large Language Models (LLLMs) in a multi-label classifica-
tion setting, utilizing the Conformal Prediction (CP) frame-
work. This approach ensures that the predictions made by
the LLM are accompanied by mathematically guaranteed
error bounds, enhancing the LLMs reliability and trustwor-
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RELIABLE OUTPUTS FROM LARGE
LANGUAGE MODELS FOR MULTI-LABEL
CLASSIFICATION TASKS

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. application Ser.
No. 18/951,159, filed on Nov. 18, 2024, the disclosure of
which is incorporated by reference in its entirety.

TECHNICAL FIELD

Aspects relate to generative artificial intelligence (Al),
and specifically to large language models (LLMs).

BACKGROUND

LLMs have become pivotal in the Machine Learning
(ML) domain due to their unprecedented predictive power
and impressive linguistic capabilities. However, they exhibit
significant limitations that hinder their deployment in high-
risk and consequential tasks, such as healthcare diagnostics.
One of the primary issues is the unreliability of LL.Ms when
generating uncalibrated responses, especially in multi-label
prediction scenarios. Multi-label prediction scenarios refer
to situations where more than one classification may
describe an input into the LLM. One reason for the unreli-
ability is that LLMs do not provide any guarantees on their
outputs, making them inherently unreliable for critical appli-
cations where accuracy and trustworthiness are paramount.

Additionally, LLMs are resource-intensive to train and
expensive to store. Their complexity contributes to a lack of
explainability of their outputs, making them challenging to
understand and interpret. This opacity is further com-
pounded by the fact that the data used for training LLMs is
often hidden from users, raising concerns about biases and
the validity of the models’ knowledge base. These factors
collectively pose significant barriers to the adoption of
LLMs in domains that demand transparency, reliability, and
efficiency.

Thus, solutions are needed to address the aforementioned
problems.

SUMMARY

Aspects disclosed herein provide a system and methods
for providing reliability measures to LLM outputs. The
system and methods provides the reliability measures by
integrating [LLMs within a Conformal Prediction (CP)
framework. CP is a rigorous statistical method that provides
confidence levels for the outputs of ML models. This
approach ensures that the predictions made by the LLM are
accompanied by mathematically guaranteed error bounds,
enhancing the LLMs reliability and trustworthiness.

By treating LL.Ms as a black box, the system and methods
eliminates the need for LLM retraining or fine-tuning,
thereby avoiding additional computational costs. The system
and methods implements a theoretically-proven statistical
procedure that calibrates the LLM’s outputs without altering
its internal mechanisms. Specifically, the system and meth-
ods use a calibration data—data that the LLM has not
previously encountered but where there are known correct
outcomes—to compute a conformity score for each instance
in the calibration data. The conformity scores measure how
well the LL.M’s predictions align with the actual known
outcomes in the calibration data.
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Based on a predefined error tolerance and the conformity
scores, the system and methods calculates specific order
statistics (a quantile score). The quantile score is then stored
and used to evaluate new predictions regarding future data
input into the LLM. For example, if future data is input into
the LLM, the LLM can output a future plurality of classi-
fication values. The future plurality of classification values
may be compared against to the quantile score. This com-
parison allows the system to determine a set of predictions
that conform to the desired confidence level set forth by the
error tolerance, effectively guaranteeing that the error rate
does not exceed a specified error tolerance. This self-
contained approach provides rigorous mathematical guaran-
tees for each prediction made by the LLM. Thus, what is
disclosed is a reliability layer built to compliment LL.Ms.

In aspects, the system can implement one or more com-
puting devices to perform the aforementioned functionality.
Starting with a calibration stage, in which a benchmark is set
to asses and adjust the LLM’s predictive confidence, the one
or more computing devices can achieve the functionality by
first inputting into a LLM, an instance of calibration data to
be classified. A plurality of classification values classifying
the instance may be received from the LLM, where each
classification value of the plurality of classification values
includes an associated probability representing a likelihood
that each classification value is a valid output for the
instance. A conformity score can then be computed for the
instance. The conformity score for the instance can then be
stored in an array for later use. The aforementioned proce-
dure may be repeated for further instances of the calibration
data. Once all the instances have conformity scores in the
array, the system can compute a quantile score based on the
array and a predefined error tolerance. The quantile score
may be stored to be used as a cutoff for a future plurality of
classification values associated with future data that is input
into the LLM.

After the calibration stage, and in aspects, the system can
use the quantile score to guarantee a certain level of confi-
dence for future outputs of the LLM based on future data
that is input into the LLM by the system. In aspects, the
system can do this by inputting, into the LLM, the future
data to be classified by the LLM. It should be noted that the
future data and the calibration data should be from the same
domain to be classified. In aspects, a future plurality of
classification values classifying the future data may be
received, where each future classification value of the future
plurality of classification values includes an associated prob-
ability representing a likelihood that each future classifica-
tion value is a valid output. The future plurality of classifi-
cation values can then be ordered in descending order. A
cutoff for the future plurality of classification values can then
be determined based on the quantile score. In aspects, the
system can output, to a graphical user interface (GUI), a
subset of the future plurality of classification values from a
highest probability to the cutoff, for display to a user.

The user may be any number of users. In the case where
the calibration data and the future data are both related to
healthcare data, the user may be, for example, a doctor that
is using the system to predict with some confidence a
diagnosis based on the healthcare data. The subset of future
plurality of classification values may be predicted healthcare
conditions or diseases. And the GUI may be an interface of
an electronic health records management system. This is
merely exemplary. The system and methods may be
expanded to other domains as will be understood by a person
of ordinary skill in the art (POSA) by reading this disclosure.
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In aspects, in order to improve the system, the quantile
score may be re-computed based on updated calibration
data. This may be done at predetermined intervals to incor-
porate any new calibration data. In this way, the system may
be tuned to provide better reliability/confidence metrics over
time if better calibration data is available. This may be done
without the computationally expensive task of having to
update or retune the LLM itself.

Certain aspects have other steps or elements in addition to
or in place of those mentioned above. The steps or elements
will become apparent to a POSA from a reading of the
following detailed description when taken with reference to
the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated
herein and form a part of the specification, illustrate aspects
of the present disclosure and, together with the description,
further serve to explain the principles of the disclosure and
to enable a POSA to make and use the aspects.

FIG. 1 is an example system for providing reliability
measures to LLLM outputs according to aspects.

FIG. 2 shows how a plurality of classification values is
ordered by the system according to aspects.

FIG. 3 shows how a subset of a future plurality of
classification values is obtained based on a cutoff according
to aspects.

FIG. 4 is an example method of operating the system
according to aspects.

FIG. 5 is a further example method of operating the
system according to aspects.

FIG. 6 is an example architecture of the components that
may be used to implement the computing devices of the
system according to aspects.

DETAILED DESCRIPTION

Aspects disclosed herein provide a system and methods
for providing reliability measures to LLM outputs. The
system and methods provides an enhancement to existing
LLMs because it attaches a reliability layer to existing
LLMs. The reliability layer guarantees a baseline level of
certainty/confidence in the LLM’s outputs.

The system and methods is distinct over existing solutions
in several aspects. First, the system and methods does not
rely on any particular data distribution to provide its guar-
antees unlike some current approaches to the problem. For
example, current solutions addressing LLM reliability com-
monly use Bayesian approaches to predict reliability. How-
ever, these approaches require knowledge about the data
distribution and impose heavy assumptions on the prediction
tasks. Incorrect assumptions can lead to invalid probability
estimates. The system disclosed, however, operates in a
distribution-free manner, meaning it does not rely on any
assumptions about how the data is generated. This ensures
that the confidence levels provided are valid regardless of
the underlying data distribution.

Second, existing methods estimate reliability using exter-
nal sources such as expert advice or semantic entropy.
Example approaches using this approach are, for example,
retrieval-augmented generation (RAG) systems. These
approaches, however, cannot guarantee trustworthiness, as
they depend on factors outside the model’s control. In
contrast, the disclosed system and methods is self-contained
and provides rigorous error bounds for every statement
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made by the LLM. By relying solely on the model’s outputs
and a calibration dataset, the system eliminates the need for
external inputs.

Third, existing methods often require re-training LLLM
models or incorporating human-in-the-loop techniques,
which are computationally intensive and time-consuming.
Ensemble methods, for example, estimate uncertainty by
aggregating predictions from multiple models. The system
disclosed, however, is computationally efficient because it
relies on a single LLLM and avoids re-training. This simplic-
ity makes the disclosed approach more elegant and practical
for real-world applications.

Fourth, existing methods take token probabilities at face
value, which may be misleading due to the overconfidence
of LLMs. The system does not use these probabilities
directly. Instead, the system calibrates them to make them
reliable, ensuring that the predicted confidence levels accu-
rately reflect the true likelihood of each outcome.

Fifth, many critical tasks, such as medical diagnosis,
require multi-label predictions where multiple conditions or
labels may be present simultaneously. The system disclosed
is particularly suited for these scenarios, as it can provide
statistically valid confidence levels for each label in a
multi-label setting. This capability addresses a significant
need in fields where complex, concurrent predictions are
essential.

The following aspects are described in sufficient detail to
enable those skilled in the art to make and use the disclosure.
It is to be understood that other aspects are evident based on
the present disclosure, and that system, process, or mechani-
cal changes may be made without departing from the scope
of aspects of the present disclosure.

In the following description, numerous specific details are
given to provide a thorough understanding of the disclosure.
However, it will be apparent that the disclosure may be
practiced without these specific details. In order to avoid
obscuring an aspect of the present disclosure, some well-
known circuits, system configurations, architectures, and
process steps are not disclosed in detail.

The drawings showing aspects of the system are semi-
diagrammatic, and not to scale. Some of the dimensions are
for the clarity of presentation and are shown exaggerated in
the drawing figures. Similarly, although the views in the
drawings are for ease of description and generally show
similar orientations, this depiction in the figures is arbitrary
for the most part. Generally, the disclosure may be operated
in any orientation.

The term “module” or “unit” referred to herein may
include software, hardware, or a combination thereof in an
aspect of the present disclosure in accordance with the
context in which the term is used. For example, the software
may be machine code, firmware, embedded code, or appli-
cation software. Also, for example, the hardware may be
circuitry, a processor, a special purpose computer, an inte-
grated circuit, integrated circuit cores, or a combination
thereof. Further, if a module or unit is written in the system
or apparatus claims section below, the module or unit is
deemed to include hardware circuitry for the purposes and
the scope of the system or apparatus claims.

The modules or units in the following description of the
aspects may be coupled to one another as described or as
shown. The coupling may be direct or indirect, without or
with intervening items between coupled modules or units.
The coupling may be by physical contact or by communi-
cation between modules or units.
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System Overview and Function

FIG. 1 is an example system 100 for providing reliability
measures to LLM 108 outputs according to aspects. In
aspects, the system 100 may be implemented on one or more
computing devices, including server infrastructure of a com-
pany, a cloud services provider, etc. For example, the system
100 may be housed in a cloud-computing environment 102.
The cloud-computing environment 102 can include server
infrastructure. The cloud-computing environment 102 may
be a public or private cloud service. A private cloud refers
to a cloud environment similar to a public cloud with the
exception that it is operated solely for a single organization.

In aspects, the cloud-computing environment 102 can
comprise a variety of centralized or decentralized computing
devices. For example, the cloud-computing environment
102 may include a mobile device, a laptop computer, a
desktop computer, grid-computing resources, a virtualized
computing resource, cloud-computing resources, peer-to-
peer distributed computing devices, a server, a server farm,
or a combination thereof. The cloud-computing environment
102 may be centralized in a single room, distributed across
different rooms, distributed across different geographic loca-
tions, or embedded within a network 120.

In aspects, and as shown in FIG. 1, the computing devices
of the cloud-computing environment 102 may have various
software modules stored thereon to enable the functions of
the system 100. In aspects, these modules can include a data
preparation module 106, a LLM 108, a conformity calcula-
tion module 110, and a compute quantile module 112. Each
of these modules will be discussed in detail below.

The network 120 refers to a telecommunications network,
such as a wired or wireless network. The network 120 can
span and represent a variety of networks and network
topologies. For example, the network 120 can include wire-
less communication, wired communication, optical commu-
nication, ultrasonic communication, or a combination
thereof. For example, satellite communication, cellular com-
munication, Bluetooth, Near Field Communications (NFC),
Infrared Data Association standard (IrDA), wireless fidelity
(WiFi), and worldwide interoperability for microwave
access (WiMAX) are examples of wireless communication
that may be included in the network 120. Cable, Ethernet,
digital subscriber line (DSL), fiber optic lines, fiber to the
home (FTTH), and plain old telephone service (POTS) are
examples of wired communication that may be included in
the network 120. Further, the network 120 can traverse a
number of topologies and distances. For example, the net-
work 120 can include a direct connection, personal area
network (PAN), local area network (LAN), metropolitan
area network (MAN), wide area network (WAN), or a
combination thereof.

In aspects, and as shown in FIG. 1, the system 100 can
first perform a calibration procedure to initialize the system
100. The calibration procedure refers to a process by which
the system 100 can set a benchmark to assess and adjust the
LLM’s 108 predictive confidence. The system 100 may
begin the calibration procedure by first receiving input data
104 from a data source. The data source may be, for
example, a computer or database storing the input data 104.
The input data 104 refers to data from a target domain for
which the LLM 108 will be making predictions. For
example, if the target domain is medical diagnostics, the
input data 104 may be, for example, chest radiographs or
x-rays covering a range of conditions the LLM 108 is
expected to identify from the data. This is exemplary, and
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any target domain and data set may be adapted to use the
system 100 as will be recognized by a POSA reading this
disclosure.

During the calibration procedure, the input data 104 will
be referred to as calibration data. For the calibration proce-
dure to work as intended, it is important and assumed that
the calibration data has not been previously used to train or
fine-tune the LL.M 108. This is to prevent any data leakage
or bias of the LLM 108 when classifying the calibration data
initially. It is also important that the calibration data be
pre-labeled with known and correct labels. The LLM 108
will be asked to predict the correct labels for each instance
of the calibration data, without actually knowing of the
known and correct labels itself. Thus, the calibration pro-
cedure will determine how well the LLM’s 108 output
matches to known and correct outcomes.

In aspects, an instance of the calibration data may be
transmitted to, and received by, the data preparation module
106. The data preparation module 106 refers to a software
program and/or class of software libraries that when
executed by one or more computing devices, performs
functions to shape the instance into a desired format to be
input into the LLM 108. For example, to match the input
format expected by the LLM 108, the data preparation
module 106 can execute code to perform some preprocess-
ing steps. If the instance is an image, such as a chest
radiograph or x-ray, the preprocessing steps can include such
things as resizing images, normalizing pixel values, and
formatting the data according to the LLM’s 108 require-
ments. [ the instance is textual, the preprocessing steps may
involve tokenization, encoding, and removing any irrelevant
or sensitive information prior to putting the instance into the
LLM 108. In aspects, the data preparation module 106 can
also indicate what format the output of the LL.M 108 should
take. This may be, for example, providing a template format
of what the outputs should look like. In this way, the LLM’s
108 outputs may be conformed to an expected or desired
format. Proper data preparation by the data preparation
module 106 ensures that the LLLM 108 can process instances
of the calibration data effectively, leading to accurate com-
putation of conformity scores, as will be discussed later in
this disclosure.

In aspects, once formatted by the data preparation module
106, the instance may be input into the LLM 108. The LLM
108 can process the instance and generate an output based on
the instance. In aspects, and taking the example of medical
diagnostics, the output may be a plurality of classification
values classifying the instance. The plurality of classifica-
tion values may be, for example, predicted diagnoses of
diseases/medical conditions that may be predicted and/or
deduced from the instance. For example, if the instance is a
chest radiograph or x-ray, the predicted diagnoses may be
pneumonia, tuberculosis, emphysema, lung cancer, chronic
obstructive pulmonary disease (COPD), pulmonary fibrosis,
sarcoidosis, etc. In aspects, each classification value of the
plurality of classification values can also include an associ-
ated probability/confidence score representing a likelihood
that each classification value is a valid output. For example,
for a chest x-ray, the LLM 108 can output a set of diagnoses
indicating what diseases/medical conditions the LLM 108
believes the chest x-ray shows (pneumonia, tuberculosis,
emphysema, etc.), accompanied by a probability score (ei-
ther represented as a percentage or a softmax function
probability) of how certain the LLM 108 is that its predicted
disease/medical condition is the correct prediction.

In aspects, the plurality of classification values can then
be transmitted to, and received by, the conformity calcula-
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tion module 110. The conformity calculation module 110
refers to a software program and/or class of software librar-
ies that when executed by one or more computing devices,
performs functions to compute a conformity score for the
instance. The conformity score refers to a quantified value
representing how well the LL.M’s 108 prediction aligns with
the true diagnosis shown in the instance of calibration data.
In aspects, the conformity score may be computed by sorting
each classification value in descending order, and starting
from a highest probability outcome, adding each associated
probability for all known valid outputs of the instance. In
aspects, once the conformity score for the instance is deter-
mined, it may be stored in an array. The array can be
represented as “a” throughout this disclosure.

FIG. 2 shows how a plurality of classification values is
ordered by the system 100 according to aspects. In FIG. 2,
the plurality of classification values is shown on the x-axis
and are indicated by {cl, ¢2 . . ., ¢10}. The probability/
confidence score associated with each classification value is
shown on the y-axis and are in the range of [0, 1] indicating
a probability from 0% to 100%.

In aspects, and for further instances of calibration data,
the above described procedure may be performed to obtain
a collection of conformity scores across all instances of the
calibration data. This collection provides the statistical basis
for assessing the LLM’s 108 predictive behavior.

In aspects, once the array of conformity scores is
obtained, the array may be transmitted to, and received by,
the compute quantile module 112. The compute quantile
module 112 refers to a software program and/or class of
software libraries that when executed by one or more
computing devices, performs functions to compute a quan-
tile score based on the array and a predefined error tolerance.
The quantile score refers to a quantifiable value that serves
as a threshold or cutoff value that determines the level of
confidence required by the LLM’s 108 future predictions to
be considered reliable. The predefined error tolerance refers
to a level of error that is acceptable for the system 100 when
predicting what classifications are the correct ones. The error
tolerance can be an opposite way of thinking of the system’s
100 confidence. For example, if we set the error to 10%, then
the confidence of the prediction sets will be 90%; if the error
is set to 40%, then the confidence of the prediction sets will
be 60%. In aspects, both the error tolerance and the confi-
dence will always be a real number in the range of [0, 1],
representing the percentage of error tolerance and confi-
dence desired for the system 100. The compute quantile
module 112 can compute the quantile score using any
number of known methods. For example, if the software
implementing the compute quantile module 112 is imple-
mented using the Python computer programming language,
the function “np.quantile(a,e)” may be used to compute the
quantile score, where o is the array, and & is the error
tolerance. The output of the function will be a numerical
value.

In aspects, the quantile score may be stored and used as
a cutoff for a future plurality of classification values asso-
ciated with future data that is input into the LLM 108. For
example, and as shown in FIG. 1, storage 114 can store the
quantile score. This step forms the conclusion of the cali-
bration procedure. How the quantile score will be used on
future data will now be described.

In aspects, once the system 100 is calibrated, it may be
used on future data to be classified by the LLM 108. As
previously indicated, the future data should be in the same
domain as the calibration data. Taking the instance where the
calibration data was a chest radiograph or x-ray, the future
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data would also have to be a chest radiograph or x-ray. In
aspects, the system 100 can receive from a data source the
future data as its input data 104. In aspects, the same
preprocessing described with respect to the calibration pro-
cedure may be performed on the future data by the data
preparation module 106. Once the future data is prepro-
cessed, it is input into the LLM 108 to be classified. The
LLM 108 can generate a future plurality of classification
values classifying the future data. Similar to what was
described in the calibration procedure, each future classifi-
cation value of the future plurality of classification values
can include an associated probability representing a likeli-
hood that each future classification value is a valid output.

In aspects, once the plurality of classification values is
obtained, the values may be transmitted to, and received by,
the conformity calculation module 110. This time, rather
than compute conformity scores, the conformity calculation
module 110 can simply order the future plurality of classi-
fication values in descending order. Once ordered, the con-
formity calculation module 110 can determine a cutoff for
the future plurality of classification values based on the
stored quantile score, which it can look up and obtain from
the storage 114. In aspects, the cutoff can discard any of the
future classification values of the future plurality of classi-
fication values that fall below the value of the cutoff. In this
way, a prediction set is obtained based on a subset of the
future plurality of classification values that the system 100
can determine is within the error tolerance desired. FIG. 3
shows how a subset of a future plurality of classification
values is obtained based on the cutoff according to aspects.
In FIG. 3, the quantile score is shown by q, and the future
plurality of classification values within the region shown in
302 are the subset of the future plurality of classification
values that the system 100 determines is within the error
tolerance desired.

In aspects, this subset of the future plurality of classifi-
cation values may be output to a GUI for display to a user.
As previously indicated, and taking the example where the
future data relates to healthcare diagnostics, the GUI may be
that of an electronics health record management system
displaying the predicted diagnoses based on the data, and the
user may be a doctor.

In order to improve the system 100, from time to time and
at predetermined intervals, the quantile score may be re-
computed using updated calibration data in the same manner
as was described with respect to the calibration procedure.
As previously indicated, this is a way of updating the
confidence levels of the system 100 in a computationally
efficient way when better calibration data is available.

The functions of the system 100 may be performed by the
modules or units of the server infrastructure of the system
100, for example the computing devices of the cloud-
computing environment 102. The modules or units may be
implemented as instructions stored on a non-transitory com-
puter readable medium to be executed by one or more
computing units such as a processor, a special purpose
computer, an integrated circuit, integrated circuit cores, or a
combination thereof. The non-transitory computer readable
medium may be implemented with any number of memory
units, such as a volatile memory, a nonvolatile memory, an
internal memory, an external memory, or a combination
thereof. The non-transitory computer readable medium may
be integrated as a part of the system 100, or installed as a
removable portion of the system 100.

Methods of Operation

FIG. 4 is an example method 400 of operating the system

100 according to aspects. Method 400 may be implemented
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on computing devices, for example the computing devices
of the cloud-computing environment 102. Method 400
reflects the steps of the calibration procedure described
above.

In aspects, method 400 may begin by inputting into a
LLM 108, an instance of calibration data to be classified, as
shown in step 402. A plurality of classification values
classitying the instance may be received from the LL.M 108,
where each classification value of the plurality of classifi-
cation values includes an associated probability representing
a likelihood that each classification value is a valid output
for the instance, as shown in step 404. A conformity score
can then be computed for the instance, as shown in step 406.
The conformity score can be computed by the conformity
calculation module 110. The conformity score for the
instance can then be stored in an array for later use, as shown
in step 408. The aforementioned procedure may be repeated
for further instances of the calibration data, as shown in step
410. Once all the instances of the calibration data have
conformity scores in the array, the system 100 can compute
a quantile score based on the array and a predefined error
tolerance, as shown in step 412. This can be done by the
compute quantile module. The quantile score may be stored
to be used as a cutoff for a future plurality of classification
values associated with future data that is input into the LLM
108, as shown in step 414. For example, storage 114 can
store the quantile score.

FIG. 5 is a further example method 500 of operating the
system 100 according to aspects. Method 500 may be
implemented on computing devices, for example the com-
puting devices of the cloud-computing environment 102.
Method 500 reflects the steps after the calibration procedure
described above.

In aspects, method 500 may begin by inputting, into the
LLM 108, the future data to be classified by the LLM 108,
as shown in step 502. A future plurality of classification
values classifying the future data may be received from the
LLM 108, where each future classification value of the
future plurality of classification values includes an associ-
ated probability representing a likelihood that each future
classification value is a valid output, as shown in step 504.
The future plurality of classification values can then be
ordered in descending order, as shown in step 506. This
ordering can be done by the conformity calculation module
110. A cutoff for the future plurality of classification values
can then be determined based on the quantile score, as
shown in step 508. Based on the cutoff, a set of the future
plurality of classification values can be obtained and can be
displayed to a user, or otherwise used in further downstream
processing. In aspects, the system 100 can optionally output,
to a GUI, the subset of the future plurality of classification
values from a highest probability to the cutoff, for display to
a user, as shown in step 510.

The operations of methods 400 and 500 are performed, for
example, by system 100, in accordance with aspects
described above. The functions described may be performed
according to and consistent with FIGS. 1-3, and by the data
preparation module 106, the LLM 108, the conformity
calculation module 110, and the compute quantile module
112, or their equivalents as described above. Such modules
may be combined in various ways or manners to perform the
functions described with respect to methods 400 and 500.
Components of the System

FIG. 6 is an example architecture 600 of the components
that may be used to implement the computing devices of the
system 100 according to aspects. The components may be
implemented on any of the devices of the system 100, for
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example the computing devices of the cloud-computing
environment 102. In aspects, the components may include a
control unit 602, a storage unit 606, a communication unit
616, and a user interface 612. The control unit 602 may
include a control interface 604. The control unit 602 may
execute software 610 to provide some or all of the intelli-
gence of system 100. The control unit 602 may be imple-
mented in a number of different ways. For example, the
control unit 602 may be a processor (e.g., central processing
unit (CPU) or a graphics processing unit (GPU)), an appli-
cation specific integrated circuit (ASIC), an embedded pro-
cessor, a microprocessor, a hardware control logic, a hard-
ware finite state machine (FSM), a digital signal processor
(DSP), a field programmable gate array (FPGA), or a
combination thereof.

The control interface 604 may be used for communication
between the control unit 602 and other functional units or
devices of system 100. The control interface 604 may also
be used for communication that is external to the functional
units or devices of system 100. The control interface 604
may receive information from the functional units or devices
of system 100, or from remote devices 620, or may transmit
information to the functional units or devices of system 100,
or to remote devices 620. The remote devices 620 refer to
devices external to system 100, such as any interfaces or
computers used provide the input data 104 into the system
100.

The control interface 604 may be implemented in differ-
ent ways and may include different implementations
depending on which functional units or devices of system
100 or remote devices 620 are being interfaced with the
control unit 602. For example, the control interface 604 may
be implemented with integrated circuits, optical circuitry,
waveguides, wireless circuitry, wireline circuitry to attach to
a bus, an application programming interface (API), or a
combination thereof. The control interface 604 may be
connected to a communication infrastructure 622, such as a
bus, to interface with the functional units or devices of
system 100 or remote devices 620.

The storage unit 606 may store the software 610. For
illustrative purposes, the storage unit 606 is shown as a
single element, although it is understood that the storage unit
606 may be a distribution of storage elements. Also for
illustrative purposes, the storage unit 606 is shown as a
single hierarchy storage system, although it is understood
that the storage unit 606 may be in a different configuration.
For example, the storage unit 606 may be formed with
different storage technologies forming a memory hierarchi-
cal system including different levels of caching, main
memory, rotating media, or off-line storage. The storage unit
606 may be a volatile memory, a nonvolatile memory, an
internal memory, an external memory, or a combination
thereof. For example, the storage unit 606 may be a non-
volatile storage such as nonvolatile random access memory
(NVRAM), Flash memory, disk storage, or a volatile storage
such as static random access memory (SRAM) or dynamic
random access memory (DRAM).

The storage unit 606 may include a storage interface 608.
The storage interface 608 may be used for communication
between the storage unit 606 and other functional units or
devices of system 100. The storage interface 608 may also
be used for communication that is external to system 100.
The storage interface 608 may receive information from the
other functional units or devices of system 100 or from
remote devices 620, or may transmit information to the other
functional units or devices of system 100 or to remote
devices 620. The storage interface 608 may include different
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implementations depending on which functional units or
devices of system 100 or remote devices 620 are being
interfaced with the storage unit 606. The storage interface
608 may be implemented with technologies and techniques
similar to the implementation of the control interface 604.

The communication unit 616 may enable communication
to devices, components, modules, or units of system 100 or
to remote devices 620. For example, the communication unit
616 may permit the system 100 to communicate between the
modules of the cloud-computing environment 102. The
communication unit 616 may further permit the devices of
system 100 to communicate with remote devices 620 such as
an attachment, a peripheral device, or a combination thereof,
through the network 120, or to data sources providing the
input data 104 into the system 100.

As previously indicated, the network 120 may span and
represent a variety of networks and network topologies. For
example, the network 120 may include wireless communi-
cation, wired communication, optical communication, ultra-
sonic communication, or a combination thereof. For
example, satellite communication, cellular communication,
Bluetooth, Infrared Data Association standard (IrDA), wire-
less fidelity (WiFi), and worldwide interoperability for
microwave access (WiMAX) are examples of wireless com-
munication that may be included in the network 120. Cable,
Ethernet, digital subscriber line (DSL), fiber optic lines,
fiber to the home (FTTH), and plain old telephone service
(POTS) are examples of wired communication that may be
included in the network 120. Further, the network 120 may
traverse a number of network topologies and distances. For
example, the network 120 may include direct connection,
personal area network (PAN), local area network (LAN),
metropolitan area network (MAN), wide area network
(WAN), or a combination thereof.

The communication unit 616 may also function as a
communication hub allowing system 100 to function as part
of the network 120 and not be limited to be an end point or
terminal unit to the network 120. The communication unit
616 may include active and passive components, such as
microelectronics, communications circuitry, Radio Fre-
quency (RF) circuitry, or an antenna, for interaction with the
network 120.

The communication unit 616 may include a communica-
tion interface 618. The communication interface 618 may be
used for communication between the communication unit
616 and other functional units or devices of system 100 or
to remote devices 620. The communication interface 618
may receive information from the other functional units or
devices of system 100, or from remote devices 620, or may
transmit information to the other functional units or devices
of the system 100 or to remote devices 620. The commu-
nication interface 618 may include different implementa-
tions depending on which functional units or devices are
being interfaced with the communication unit 616. The
communication interface 618 may be implemented with
technologies and techniques similar to the implementation
of the control interface 604.

The user interface 612 may present information generated
by system 100. In aspects, the user interface 612 allows a
user to interface with the devices of system 100 or remote
devices 620. The user interface 612 may include an input
device and an output device. Examples of the input device
of the user interface 612 may include a keypad, buttons,
switches, touchpads, soft-keys, a keyboard, a mouse, or any
combination thereof to provide data and communication
inputs. Examples of the output device may include a display
interface 614. The control unit 602 may operate the user
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interface 612 to present information generated by system
100, for example, the subset of future plurality of classifi-
cation values. The control unit 602 may also execute the
software 610 to present information generated by system
100, or to control other functional units of system 100. The
display interface 614 may be any graphical user interface
such as a display, a projector, a video screen, or any
combination thereof.

The above detailed description and aspects of the dis-
closed system 100 are not intended to be exhaustive or to
limit the disclosed system 100 to the precise form disclosed
above. While specific examples for system 100 are described
above for illustrative purposes, various equivalent modifi-
cations are possible within the scope of the disclosed system
100, as a POSA will recognize. For example, while pro-
cesses and methods are presented in a given order, alterna-
tive implementations may perform routines having steps, or
employ systems having processes or methods, in a different
order, and some processes or methods may be deleted,
moved, added, subdivided, combined, or modified to pro-
vide alternative or sub-combinations. Each of these pro-
cesses or methods may be implemented in a variety of
different ways. Also, while processes or methods are at times
shown as being performed in series, these processes or
blocks may instead be performed or implemented in parallel,
or may be performed at different times.

The resulting methods and system 100 is cost-effective,
highly versatile, and accurate, and may be implemented by
adapting components for ready, efficient, and economical
manufacturing, application, and utilization. Another impor-
tant aspect of aspects of the present disclosure is that it
valuably supports and services the historical trend of reduc-
ing costs, simplifying systems, and/or increasing perfor-
mance.

These and other valuable aspects of the present disclosure
consequently further the state of the technology to at least
the next level. While the disclosed aspects have been
described as the best mode of implementing system 100, it
is to be understood that many alternatives, modifications,
and variations will be apparent to those skilled in the art in
light of the descriptions herein. Accordingly, it is intended to
embrace all such alternatives, modifications, and variations
that fall within the scope of the included claims. All matters
set forth herein or shown in the accompanying drawings are
to be interpreted in an illustrative and non-limiting sense.
Accordingly, the scope of the disclosure should be deter-
mined not by the aspects illustrated, but by the appended
claims and their equivalents.

What is claimed is:
1. A computer-implemented method comprising:
inputting, by one or more computing devices and into a
large language model (LLM), instances of calibration
data to be classified by the LLM, wherein:
the calibration data is data that the LLM has not
previously encountered, and
the calibration data is pre-labeled with known and
correct labels classifying valid outputs based on the
calibration data;
receiving, by the one or more computing devices and from
the LLM, a plurality of classification values classifying
the instances, wherein each classification value of the
plurality of classification values includes an associated
probability representing a likelihood that each classi-
fication value is a valid output for the instances;
computing, by the one or more computing devices, con-
formity scores measuring how well the LLM output
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aligns with the known and correct labels of the cali-
bration data for the instances;

computing, by the one or more computing devices, a

quantile score based on the conformity scores and a
predefined error tolerance; and

storing, by the one or more computing devices, the

quantile score to be used as a cutoff for a future
plurality of classification values associated with future
data that is input into the LLM.

2. The computer-implemented method of claim 1, further
comprising, computing, by the one or more computing
devices, the conformity scores by:

sorting each classification value in descending order; and

starting from a highest probability outcome, adding each

associated probability for all known valid outputs.

3. The computer-implemented method of claim 1, further
comprising formatting, by the one or more computing
devices, the instances of the calibration data prior to input-
ting the instances into the LLM.

4. The computer-implemented method of claim 3,
wherein the formatting comprises:

resizing the instances,

tokenizing the instances,

removing irrelevant data from the instances, or

modifying the instances to conform to a template.
5. The computer-implemented method of claim 1, further
comprising:
inputting, by the one or more computing devices and into
the LLM, the future data to be classified by the LLM;

receiving, by the one or more computing devices and from
the LLM, the future plurality of classification values
classifying the future data, wherein each future classi-
fication value of the future plurality of classification
values includes an associated probability representing a
likelihood that each future classification value is a valid
output;

ordering, by the one or more computing devices, the

future plurality of classification values in descending
order; and

determining, by the one or more computing devices, the

cutoff for the future plurality of classification values
based on the quantile score.

6. The computer-implemented method of claim 5, further
comprising outputting, by the one or more computing
devices and to a graphical user interface (GUI), a subset of
the future plurality of classification values from a highest
probability to the cutoff, for display to a user.

7. The computer-implemented method of claim 1, further
comprising, re-computing, by the one or more computing
devices, the quantile score at predetermined intervals using
updated calibration data.

8. A non-transitory computer readable medium including
instructions, that when executed by one or more processors
of a computing system, causes the computing system to
perform operations comprising:

inputting, into a large language model (LLM), instances

of calibration data to be classified by the LLM,

wherein:

the calibration data is data that the LLM has not
previously encountered, and

the calibration data is pre-labeled with known and
correct labels classifying valid outputs based on the
calibration data;

receiving, from the LLM, a plurality of classification

values classifying the instances, wherein each classifi-
cation value of the plurality of classification values
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includes an associated probability representing a like-
lihood that each classification value is a valid output for
the instances;

computing conformity scores measuring how well the

LLM output aligns with the known and correct labels of
the calibration data for the instances;

computing a quantile score based on the conformity

scores and a predefined error tolerance; and

storing the quantile score to be used as a cutoff for a future

plurality of classification values associated with future
data that is input into the LLM.

9. The non-transitory computer readable medium of claim
8, wherein the operations further comprise computing the
conformity scores by:

sorting each classification value in descending order; and

starting from a highest probability outcome, adding each

associated probability for all known valid outputs.

10. The non-transitory computer readable medium of
claim 8, wherein the operations further comprise formatting
the instances of the calibration data prior to inputting the
instances into the LLM.

11. The non-transitory computer readable medium of
claim 10, wherein the formatting comprises:

resizing the instances,

tokenizing the instances,

removing irrelevant data from the instances, or

modifying the instances to conform to a template.
12. The non-transitory computer readable medium of
claim 8, wherein the operations further comprise:
inputting, into the LLM, the future data to be classified by
the LLM;

receiving, from the LLM, the future plurality of classifi-
cation values classifying the future data, wherein each
future classification value of the future plurality of
classification values includes an associated probability
representing a likelihood that each future classification
value is a valid output;

ordering the future plurality of classification values in

descending order; and

determining the cutoff for the future plurality of classifi-

cation values based on the quantile score.

13. The non-transitory computer readable medium of
claim 12, wherein the operations further comprise output-
ting, to a graphical user interface (GUI), a subset of the
future plurality of classification values from a highest prob-
ability to the cutoff, for display to a user.

14. The non-transitory computer readable medium of
claim 8, wherein the operations further comprise, re-com-
puting the quantile score at predetermined intervals using
updated calibration data.

15. A computing system comprising:

a memory;

one or more processors, coupled to the memory and

configured to:
input, into a large language model (LLM), instances of
calibration data to be classified by the LLM,
wherein:
the calibration data is data that the LLM has not
previously encountered, and
the calibration data is pre-labeled with known and
correct labels classifying valid outputs based on
the calibration data;
receive, from the LLM, a plurality of classification
values classifying the instances, wherein each clas-
sification value of the plurality of classification val-
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ues includes an associated probability representing a
likelihood that each classification value is a valid
output for the instances;

compute conformity scores measuring how well the
LLM output aligns with the known and correct labels 5
of the calibration data for the instances;

compute a quantile score based on the conformity
scores and a predefined error tolerance; and

store the quantile score to be used as a cutoff for a
future plurality of classification values associated 19
with future data that is input into the LLM.

16. The computing system of claim 15, wherein the one

or more processors are further configured to compute the
conformity scores by:

sorting each classification value in descending order; and 15

starting from a highest probability outcome, adding each
associated probability for all known valid outputs.

17. The computing system of claim 15, wherein the one

or more processors are further configured to format the
instances of the calibration data prior to inputting the
instances into the LLM.

20

18. The computing system of claim 15, wherein the one

or more processors are further configured to:

16

input, into the LLM, the future data to be classified by the
LLM;

receive, from the LLM, the future plurality of classifica-
tion values classifying the future data, wherein each
future classification value of the future plurality of
classification values includes an associated probability
representing a likelihood that each future classification
value is a valid output;

order the future plurality of classification values in

descending order; and

determine the cutoft for the future plurality of classifica-

tion values based on the quantile score.

19. The computing system of claim 18, wherein the one
or more processors are further configured to output, to a
graphical user interface (GUI), a subset of the future plu-
rality of classification values from a highest probability to
the cutoff, for display to a user.

20. The computing system of claim 15, wherein the one
or more processors are further configured to re-computing
the quantile score at predetermined intervals using updated
calibration data.
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