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ABSTRACT WiFi fingerprinting is one of the most widely used techniques for indoor positioning systems.
However, existing fingerprinting datasets came in different shapes and forms with varying levels of
information without any standardised format. They were also dispersed across multiple platforms, making
it challenging for new researchers to identify and access a suitable dataset to evaluate their own positioning
systems. To address this challenge, this paper provides a comprehensive review of more than 50 publicly
available WiFi fingerprinting datasets. We examine the most critical elements for fingerprinting, including
the size and location of the testbed, the WiFi signal input, the number of locations, the temporal and spatial
intervals of data collection, the positioning performance, and more. Surprisingly, it was observed that a large
number of reference and access points, the use of 3D coordinates, denser sampling grid, and higher data
collection frequencies do not always guarantee improved performance as often reported in the literature. The
paper also outlines current challenges, and proposes guidelines for creating new WiFi fingerprint datasets.

INDEX TERMS Indoor positioning, WiFi fingerprinting, open access dataset.

I. INTRODUCTION
Positioning and navigation systems, like GPS, have become
indispensable in most aspects of our life, from transportation
to logistics operations [1], [2]. However, GPS faces severe
challenges in indoor environments due to the inability of
satellite signals to penetrate modern buildings. Additionally,
the multipath effect, reflections, blockages, and absorption
in real-world indoor scenarios can result in fluctuating and
unstable GPS signal measurements, leading to unreliable
indoor positioning performance [3], [4].

Thanks to the extensive infrastructure of WiFi Access
Points (APs) in public spaces and the widespread use of
WiFi-enabled smart devices (e.g., cell phones, tablets, and
smartwatches), WiFi-based approaches were cost-effective
for indoor positioning [5], [6], making WiFi fingerprinting
one of the most popular approaches for indoor positioning
research [3], [7].
WiFi fingerprinting is a positioning approach that

estimates the user’s location by employing positioning
algorithms to match real-time WiFi signal measurements
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(fingerprints) to a pre-constructed fingerprint dataset.
Thus, the positioning performance largely relies on the
quality and granularity of the collected fingerprint dataset.
Anomalies, outliers and missing values in the fingerprint
dataset can significantly impair the accuracy of the
final estimation. Additionally, the application of machine
learning and deep learning to WiFi fingerprinting has
recently become prominent, which further enhances the
significance of data quantity, time and space diversity
and heterogeneity as factors in determining positioning
accuracy [4], [7], [8]. However, creating a high-quality
WiFi fingerprint dataset is both labour-intensive and
time-consuming.

To evaluate and validate the newly proposed WiFi
fingerprinting methods and ensure their generalisation and
transferability, researchers have chosen a cost-effective
approach by utilising publicly available large-scale WiFi
fingerprint datasets [9], [10], [11]. On the other hand, the
research community is increasingly committed to sharing
their collectedWiFi fingerprint datasets, as shown in Figure 1.
However, under these circumstances, there remains a lack
of comprehensive taxonomy and consistent standards in
the construction, formatting, description, and publication
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FIGURE 1. The total number of WiFi fingerprint datasets with open access
published annually up to June 2024. Datasets with invalid access are not
included.

of publicly available WiFi fingerprinting datasets, which
presents several critical challenges:

• The fingerprinting datasets made publicly available by
the research community were distributed across multiple
platforms, making it challenging to access.

• Many published WiFi fingerprint datasets contain
expired links or restricted access [12]. Common repos-
itories like the IndoorLoc Platform [13] only have
7 public WiFi fingerprinting datasets, with the most
recent published in 2017.

• Many existing datasets do not make clear of important
aspects such as the human interference, the signal inputs,
and the temporal changes in the WiFi signals.

• No uniform standards for the collection, format-
ting, publication, and organisation of public WiFi
fingerprinting datasets.

As a result, the above issues have led to biased usage
of publicly available datasets [14], [15], [16], potentially
causing overfitting in the proposed WiFi fingerprinting
algorithms.

To address these challenges, this paper conducts a com-
prehensive analysis and review of over 50 public WiFi fin-
gerprint datasets with open access. It thoroughly investigates
the most critical elements of a WiFi fingerprint dataset from
a researcher’s perspective, including the size and location of
the testbed, 2D/3D indoor positioning type,WiFi signal input,
access points (APs), receiver devices, the number of reference
points (RPs) covered, the number of WiFi fingerprint data
samples, data collection temporal and spatial interval, ground
truth acquisition, and reported positioning performance. The
dataset features are meticulously and extensively extracted
and compared even when they are not explicitly provided.
This paper also analyses current trends and challenges within
each dataset feature and its impact on the performance of
WiFi fingerprinting. By ensuring open access to all included
WiFi fingerprint datasets, this paper aims to provide valuable
insights and guidelines for the effective selection of the

existing datasets and the efficient construction and sharing
of new ones.

In summary, this paper makes the following contributions:
• This paper conducts a comprehensive analysis and com-
parison of over 50 publicly available WiFi fingerprint
datasets, providing a broad overview of the current
landscape in WiFi fingerprint datasets.

• The open accessibility of all included WiFi fingerprint
datasets was meticulously validated. Only access links
that are valid and up-to-date were retained.

• It identifies and investigates the most critical elements
of WiFi fingerprinting in every dataset, even when they
are not explicitly provided.

• It analyses how the trends and challenges in the
existing WiFi fingerprinting datasets impact the system
performance, thereby offering valuable insights and
guidelines for the effective selection of existing datasets
and the efficient construction and sharing of new ones.

• This paper points out that an increase in reference points
and access points, the use of 3D positioning, larger RP
intervals, and higher WiFi collection frequencies does
not always result in enhanced system performance.

• This paper proposes standards for the collection, for-
matting, publication, and organisation of public WiFi
fingerprint datasets.

The remainder of this paper is structured as follows.
Section II outlines the review scope and methodology
applied for the inclusion of public WiFi fingerprint datasets.
Section III introduces WiFi fingerprinting, its main signal
inputs in the literature. Section IV details the basic dataset
structure and presents a comprehensive comparison of
existing public WiFi fingerprint datasets. Section V lists
limitations in current publicly available WiFi datasets,
analysed the influence of different dataset features on the
reported performance, and proposes standards and guidelines
for public WiFi fingerprinting dataset publication. Finally,
Section VI draws a conclusion to the whole work.

II. REVIEW SCOPE AND METHODOLOGY
This section introduces the boundaries and research focus of
this review and details the systematic methodology utilised
to search, select, and analyse open access WiFi fingerprint
datasets, ensuring a thorough and comprehensive review of
the topic.

A. REVIEW FOCUS
This paper strives to provide a comprehensive review and
analysis of the current publicly accessible WiFi fingerprint
datasets, aiming to offer valuable insights and practical guide-
lines for both selecting existing datasets and developing and
sharing new ones effectively. Therefore, datasets specifically
designed for WiFi fingerprinting and indoor positioning
purposes constitute our primary research focus. OutdoorWiFi
fingerprint datasets, due to the different signal propagation
characteristics, are not included in the main body of this
review. To catalyse the development of WiFi fingerprinting
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FIGURE 2. Open access WiFi fingerprint dataset published on different public dataset platforms. It is
observed that most of the recent WiFi fingerprint datasets were published on Zenodo and Github.

techniques, the scope is restricted to the datasets that have
valid and timely public available access.

B. METHODOLOGY
To ensure a comprehensive search and precisely identify the
highly relevant publicly available WiFi fingerprint datasets,
various combinations of the searching keywords were
utilised. The keywords employed include ‘‘WiFi’’, ‘‘indoor’’,
‘‘localization’’, ‘‘localisation’’, ‘‘indoor positioning’’, ‘‘nav-
igation’’, ‘‘fingerprint*’’, and especially, ‘‘dataset’’ and
‘‘database’’. ‘‘IndoorLoc’’ was also used to align with the
naming conventions in WiFi fingerprint datasets [11], [14],
[15], [17], [18], [19]. These keywords were searched in
the title, keywords, and description sections of datasets
on well-known public dataset publication platforms such
as Data.gov, Kaggle, UCI Machine Learning Repository,
IEEE dataport, Zenodo, Github, Google Dataset Search,
data.world, figshare, Mendeley data, and Nist public data
repository. The distribution of datasets included in this
research, published across various public platforms, is shown
as Figure 2, indicating that most of the recentWiFi fingerprint
datasets were published on Zenodo and Github. The same
methodology was applied to search for WiFi fingerprint
dataset related publications on Google Scholar, Scopus, and
Web of Science to ensure a more thorough investigation.
In addition, research publications that include a comparison
table covering a select number of public WiFi fingerprint
datasets were also incorporated into the scope of the literature
search [18], [20], [21], [22], [23].

C. SELECTION CRITERIA
In order to secure clarity and reproducibility of our
research, we have established specific criteria for including

public WiFi fingerprint datasets and their sources in our
analysis:

• Firstly, the inclusion of existing datasets was initially
restricted to those with valid and timely open access.
The public accessibility of all datasets included in this
research was manually meticulously verified, ensuring
that they could be downloaded and unzipped by any
researcher with no further requirement or membership
subscription. For datasets published across diverse
platforms, the duplicate access was examined, and only
links that met our criteria were kept for this research.

• Secondly, the inclusion was limited to those with
dataset feature description or corresponding research
publications for reference. We were making every
effort to ensure every dataset matched its corresponding
publication, even if this was not specified on the
dataset release page, the publication heavily predated the
dataset release, or the dataset link had expired and been
replaced.

• Additionally, datasets not specifically designed for
indoor positioning purpose were included if they came
with ground truth coordinates of the WiFi signal
measurements.

• Datasets incorrectly labelled with ‘‘WiFi’’, containing
no ground truth labels, or offering no dataset feature
descriptions were all excluded.

Note that sub-datasets sharing the same access link and
release page were regarded as the same entity in this research.

III. WiFi FINGERPRINTING AND SIGNAL INPUTS
This section offers an overview of WiFi fingerprinting and its
most prominent signal inputs, including WiFi RSS (received
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FIGURE 3. An overview of WiFi-based indoor fingerprinting.

FIGURE 4. An overview of RTT protocol.

signal strength), WiFi RTT (round trip time), and CSI
(channel state information).

A. WiFi FINGERPRINTING
WiFi fingerprinting is a positioning method that employs
positioning algorithms to match real-time WiFi signal
measurements (fingerprints) to a pre-constructed fingerprint
dataset. Despite the pervasive penetration of WiFi signals,
their propagation still struggles in complex indoor environ-
ments due to refraction, reflection, attenuation, blockage,
absorption, and multipath interference. The sensitive nature

of WiFi signal propagation in complicated indoor scenarios
allows it to readily reflect even slight changes in the
indoor interior, thereby creating distinguishing and unique
fingerprints at different locations [4], [24]. By meticulously
collecting unique WiFi fingerprints and the corresponding
ground truth coordinates at different locations, a refined level
WiFi fingerprint dataset is well established. The positioning
algorithm estimates the user’s precise location by comparing
the real-time fingerprint reported by the user to the fingerprint
dataset. As depicted in Figure 3, the fingerprinting method
contains an offline phase and an online phases.

In the offline phase, an extensive radio map is constructed,
incorporating distinct WiFi fingerprints and their corre-
sponding ground-truth coordinates at all locations within the
indoor environment. This dataset then undergoes meticulous
preprocessing and data cleansing, which includes missing
value imputation, duplicate and outlier detection, data scaling
and partitioning [25], [26]. Subsequently, the processed WiFi
fingerprint dataset is used to train a positioning model. In the
online phase, when a user enters the tracking zone, a new
WiFi sample is reported to the system. Following a similar
preprocessing routine, the test sample is compared against the
training samples in the offline WiFi fingerprint dataset. The
positioning estimation of the user’s current location is then
generated by the positioning technique utilised.

B. WiFi SIGNAL INPUTS
There are currently three prominent types of WiFi signal
inputs: RSS, RTT and CSI.

WiFi RSS, also known as received signal strength indicator
(RSSI), is one of the most widely used measurements
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TABLE 1. A Snapshot of the WiFi dataset proposed in [6], [40]. The value of -200 dBm in (a) and 100,000 millimetres (mm) in (b) indicates that the AP is
not visible from the current reference point.

in traditional indoor positioning approaches [1], [7], [27],
[28], [29]. As a passive positioning method, it requires
the collection of MAC layer WiFi received signal strength
and basic service set identifier (BSSID) at every location
in the indoor scenario. The signal strength from each AP
in the environment at a specific location forms the unique
fingerprint. While fingerprinting was originally implemented
with the WiFi RSS measures [5], [27], [30], [31], [32], it can
also be seamlessly extended to includeWiFi RTT andCSI [1],
[2], [3], [4], [28], [33], [34], [35], [36].

RTT, which measures the time taken for a WiFi signal
to travel from the transmitter to the receiver, directly
calculates the distance between these points. As shown in
Figure 4, RTT protocol starts with the transmission of a fine
time measurement (FTM) request from the initiator (e.g.,
smartphone) to the responder (e.g., WiFi AP), specifying
message count and intervals. Upon receiving the request,
the WiFi AP transmits a series of FTM messages and
awaits acknowledgment from the smartphone. The responder
meticulously timestamps and calibrates each FTM request
and acknowledgment receipt. Exchange of these temporal
details allows both parties to calculate the round trip time
(t (1)4 − t (1)1 ), propagation time [(t (1)4 − t (1)1 − t (1)3 + t (1)2 )/2], and
therefore the distance D between the smartphone and WiFi
AP is calculated as

D =

1
n

∑n
i=1((t

(i)
4 − t (i)1 ) − (t (i)3 − t (i)2 ))

2
× c (1)

where n is the total number of FTM round trips, (t (i)4 − t (i)1 )
is the time it takes for the ith round trip, (t i3 − t i2) is the time
delay that occurred within the smartphone, and c is the speed
of light.

RTT measurements offer an alternative way to capture
the subtleties of WiFi signal propagation. Similar to RSS
fingerprints, different locations within the same testbed are
characterised by their unique RTT fingerprints. Moreover,
due to the speed of light at which theWiFi signals travel, even
a slight delay in the propagation path could lead to noticeable
changes in the RTT signal measurements especially in

none-line-of-sight (NLOS) scenarios [5]. In comparison to
RSS, RTT exhibits heightened sensitivity to interior changes,
suggesting a more promising fingerprinting performance and
positioning accuracy [37], [38], [39].

CSI utilises the propagation properties of WiFi signals to
represent signal behaviour in indoor environments. It has two
main types: Channel Impulse Response (CIR) and Channel
Frequency Response (CFR). CIR provides the magnitude
and phase information of WiFi signals in the time domain,
describing how the channel alters an impulse signal due to
multipath propagation, whereas CFR describes the character-
istics of the WiFi channel across frequency subcarriers and
can be extracted using an Orthogonal Frequency-Division
Multiplexing (OFDM) system. Multipath effects in the
complex NLOS indoor environment can be effectively
characterised by CSI to enhance positioning performance [1],
[3], [7], [28]. This method offers a higher level of granularity
compared to traditional WiFi RSS measurements, providing
a more robust solution for complicated indoor environments
where signals are highly susceptible to interference and
reflection.

IV. REVIEW OF THE EXISTING DATASETS
This section provides a detailed overview of the structure of
WiFi fingerprint datasets. Next, a comprehensive review is
conducted of more than 50 publicly available, state-of-the-
art WiFi fingerprint datasets with guaranteed open access.
The most important elements of WiFi fingerprint dataset
are investigated from a researcher’s standpoint, including
size and location of the testbed, 2D/3D indoor positioning
type, WiFi signal input, access point, receiver device, number
of RP covered, number of WiFi fingerprint data samples,
data collection temporal and spatial interval, ground truth
acquisition, and reported positioning performance.

A. STRUCTURE OF WiFi FINGERPRINT DATASETS
To achieve the best indoor positioning performance and
deliver the best indoor positioning system, WiFi fingerprint
datasets should consist of several key components, including
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FIGURE 5. Classification of different testbed types in the included
datasets. ‘Mixed’ indicates that the dataset contains more than 1 testbed
type. ‘Other’ includes building hall, hallway and corridor.

FIGURE 6. Classification of 2D/3D positioning in the included datasets.
’3D’ means that the datasets provide floor information for 3D positioning.
’3D same floor’ indicates that the dataset includes XYZ coordinates for
each data sample.

FIGURE 7. Classification of WiFi signal input in the included datasets.

primary WiFi signal measures from each AP, different WiFi
signal inputs at the same location, multiple WiFi signal
measurements at the same location, WiFi AP information
like BSSID and line-of-sight (LOS) conditions, a fine grid
of RPs, ground truth coordinates. The description of the
dataset collection process is also of great significance, such
as the description of the testbed type and size, the overall

FIGURE 8. Classification of different receiver devices used in the included
datasets.

time period for the dataset creation, the devices used for
collection, the grid size utilised for dividing RPs, and WiFi
signal measurement sampling rate.

However, very few publicWiFi fingerprint datasets include
all of those components and follow such criteria. Startingwith
different WiFi signal measurements, aside from RSS, very
few datasets include alternative signal types such as CSI and
RTT. The comparatively newly released RTT signal measure
only appears in four included datasets [40], [41] [42], [43],
and CSI is only provided in three included WiFi fingerprint
datasets [44], [45] [46]. Providing information on all the
APs in the testbed, including those that are undetected at
the current reference point (RP), is vital for dataset creation.
To indicate those APs that are too far away or in a complete
NLOS condition from this RP, default artificial values were
employed such as+100dBm [47] and−200dBm [6] forWiFi
RSSmeasurement, and−100,000mm for RTTmeasurement,
as shown in Table 1. Though the basic WiFi BSSID is seen
in all the datasets, the LOS conditions of all APs included
are only found in [40] and [48]. Next, the ground truth
locations of the RPs where WiFi fingerprint is recorded are
one of the most important elements for WiFi fingerprinting.
Collected by manually aligning fixed grid [49], [50], robot
with IMU, LIDAR, and RGB-D camera [51], [52], or total
station [23], ground truth labels are essential for reliable
indoor positioning performance evaluation. For 3D WiFi
fingerprint dataset, either XYZ axis coordinates [41], [46]
for single-floor datasets, or the corresponding FloorID were
included in each WiFi sample as illustrated in the example
above [15]. While information about the testbed is commonly
seen in public datasets, ranging from shopping malls [53] and
university buildings [54] to laboratories [55], the collection
time period is not as frequently documented. It is also
encouraged to provide detailed information of the devices
used for collection, whether it was different smartphones
[56], Raspberry Pi [43] or WiFi adaptor [57]. The grid size
of RP and WiFi sampling rate during dataset collection were
included in less than 20 public datasets, as shown in Table 2.
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TABLE 2. Overview of existing publicly available WiFi fingerprint datasets.

Therefore, following the suggested structure guideline would
greatly enhance the development and sharing of the public
WiFi fingerprint dataset.

B. OVERVIEW OF EXISTING PUBLIC DATASETS
To provide comprehensive in-depth overview of the exist-
ing state-of-the-art public datasets, thorough analysis and
comparison of important elements in constructing WiFi
fingerprint datasets are covered. The elements include size
and location of the testbed, 2D/3D indoor positioning type,
WiFi signal input, access point, receiver device, number
of RP covered, number of WiFi fingerprint data samples,
data collection temporal and spatial interval, ground truth
acquisition, and reported positioning performance. Following
the research scope and methodology outlined in Section II,
52 publicly available datasets with guaranteed open access
are included. Note that the datasets are listed according to
their publication links, and subsets within the same release
are regarded as the same dataset.

The comprehensive overview and comparison of the
included WiFi fingerprint datasets are shown in Table 2.
The corresponding links, file size and further details of the

datasets are listed in Table 3. In the comparison Table 2,
‘N/A’ indicates that the relevant element was not specified
or could not be found in the dataset description page or
related research paper, ‘N/D’ in column ‘Performance’means
the algorithms used to provide reported performance was
not described. The RSS signal measures in the included
WiFi datasets are all given in dBm values. Additionally,
the counts of reference points (# of RPs) and data samples
(# of samples) include all training, testing, validation, and
evaluation subsets. In the 2D/3D (Floors) column, ’2D’
denotes 2D positioning, while ’3D’ without any additional
details indicates same-floor 3D positioning. For datasets
spanning multiple buildings and floors, additional details are
provided after the ’3D’ label. For instance, ’3D (3)’ signifies
a dataset covering one building with three floors, while ’3D
(5&4&4)’ indicates a dataset spanning three buildings with
five, four, and four floors, respectively. All datasets were
manually downloaded, and their open access links were tested
as shown in Table 3, ensuring researchers can reliably use
these links to access the public WiFi fingerprint datasets.
Details related to previous expiring links could be found in
the Notes column in Table 3.
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TABLE 2. (Continued.) Overview of existing publicly available WiFi fingerprint datasets.

The detailed investigation and analysis of the key elements
of the existing datasets are presented as follows:

1) TESTBED SIZE AND LOCATION
It is observed in Table 2 that when selecting the ideal testbed
for WiFi fingerprinting, 24 out of 52 existing datasets chose
entire buildings with 17 being university buildings, 2 being
shopping malls, and one being a museum, as shown in
Figure 5. Buildings, with their complex and complicated
interiors, present a challenging environment for implement-
ing WiFi-based indoor positioning systems. Factors such as
walls, stairs and furniture of diverse materials increase the
severity of propagation issues indoor environment, including
refraction, reflection, attenuation, blockage, absorption, and
multipath interference. However, these factors also contribute
to the construction of unique and distinguishing fingerprint
at different locations. The large-scale building testbed,
consisting of multiple space types (e.g., rooms, corridors,
halls, and basements), is also suitable for challenging long
trajectory recordings [23], [41], [43], [52], [57], [58], and
[59]. Additionally, multi-floor buildings naturally provide the
conditions necessary for evaluating both 2D indoor position-
ing and floor prediction performance. The reason why other

public spaces like train stations were less common due to the
need for extra authorisation and the constant presence of large
crowds.

Although sufficient for evaluating the generalization and
transferability of indoor positioning systems, constructing
fingerprint data for such large-scale real-world scenarios
requires significant human effort. For example, the offline
data construction phase took 5 months for the 5,432 m2

building in [54], compared to just 3 days for a 92 m ×

15 m building floor in [40]. Consequently, 15 of the included
datasets were collected in building floors. Smaller testbeds
were also found, such as office rooms [60], apartments [40],
and single corridors [46], [61].

2) 2D/3D POSITIONING
Despite the importance of accuracy in 2D user positioning,
researchers have also emphasized 3D positioning in the
literature. We observe that 29 of the included datasets
offer 3D ground truth labels, as shown in Figure 6,
including 26 datasets that offered floor information as part
of the 3D data. The 3D location labels vary from simple
XYZ axis coordinates [41], [58] to 2D coordinates with
a floor identifier [23], [57]. In Table 2, 3D(3) indicates
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TABLE 2. (Continued.) Overview of existing publicly available WiFi fingerprint datasets.

that the dataset supports 3D positioning and it contains
3 building floors in total [62], [63]. The challenge with
using XYZ coordinates is that the recording of the height
of the receiver device requires additional effort in dataset
construction. When data is collected using a fixed tripod,
the height label remains constant, resulting in a 2D dataset.
However, when the user moves naturally with varying
receiver heights, the tracking and labelling of the precise
ground truth becomes increasingly complex. For this reason,
25 out of the 29 3D datasets primarily provide floor
identifiers.

3) SIGNAL INPUT
The presence of RSS in 49 WiFi datasets in Table 2
clearly illustrates that RSS is one of the most widely used
measurements in traditional WiFi-based indoor positioning
approaches [1], [7], [27], [28], [29]. Over the decade span
of the included datasets, RSS has consistently been a focal
point in the research area due to its ease of access. In contrast,
the newer RTT measurement, available only on a limited
number of commercial WiFi routers [24], appears in only
four datasets [40], [41], [42], [43]. For example, due to the
limited number of RTT-enabled APs in the testbed, datasets
in [40] only include up to 13 APs in a building floor testbed.
In addition, only 3 of the included datasets provide WiFi
CSI [44], [45], [46] due to the challenging in acquiring CSI,
as discussed in Section III. The severe shortage of publicWiFi
datasets that include RTT and CSI highlights the urgent need

for their future development and publication.. The overall
classification of different WiFi signal inputs is shown in
Figure 7.

4) APs AND RECEIVER DEVICES
The number of APs and receiver devices (i.e., # of APs,
receivers in Table 2) illustrates the heterogeneity and
comprehensiveness of the datasets. In most of the building
and floor testbeds documented in the literature, hundreds of
APs were detected and recorded with their unique BSSID,
including pre-installed WiFi routers, printers, and hotspots.
However, this often means that these datasets do not provide
detailed information about the specific brand and type of
each AP included. For those provided AP information, please
refer to the Notes column in Table 3. Another challenge
associated with a large number of APs is the need for
additional preprocessing and normalization methods when
using these datasets. Regarding the receiver devices used,
as shown in Figure 8, 30 out of the 52 included datasets
utilised mobile devices such as smartphones and tablets,
7 used Raspberry Pi (RPi), 4 used WiFi adaptors, and the
remainder used other devices like ESP32 [46], [60]. Brands of
smart devices found in the datasets are Xiaomi, BQ, Huawei,
Huawei, LG, Celkon, Samsung, HTC, Sony, Nexus, Orange,
OnePlus, Asus, Google [15], [40], [53], [64]. Due to the
large number and variety of smart devices employed, detailed
information on each individual device is beyond the scope of
this comparison.
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TABLE 2. (Continued.) Overview of existing publicly available WiFi fingerprint datasets.

5) NUMBER OF RPs AND DATA SAMPLES, AND DATASET
COLLECTION INTERVAL
The number of RPs and samples (i.e., # of RPs, and #
of samples in Table 2) demonstrates the general scale of
the datasets, while the data collection interval illustrates
the methodology and organisation of real-world dataset
collection. An RP is a location where the WiFi fingerprint
data samples and ground truth labels are recorded. These
could be scattered points within the testbed or a series of
WiFi fingerprints recorded along an entire walking trajectory,
as seen in 6 out of the 52 included datasets. The density of RPs
in the testbed and the number of data samples at each RP are
indicated by the temporal and spacial intervals in the dataset
collection. They indicate the spatial and temporal granularity
of the fingerprint dataset from a construction perspective.
RPs that are too close together may result in highly similar
fingerprints and thus less accurate positioning performance
[48]. The frequency of WiFi fingerprint recording relies
on the number of APs in the background and the need
for alignment with other sensors [59], [65]. Multiple data
samples at each RP ensure comprehensive coverage of
all APs in the testbed and capture the fluctuation of
WiFi signals over short periods [24]. Therefore, statistical
features of short-term WiFi signal measurements can be

utilised by indoor positioning systems and LOS detection
algorithms [21], [66] [36]. For model training and evaluation,
RPs and data samples are divided into training, testing,
evaluation or validation subsets that don’t overlap [45], [66],
especially for IPIN Indoor Localization Competitions [67].
To enhance clarity and provide a general understanding of the
datasets, Table 2 includes the number of RPs and data samples
across all non-overlapping training, testing, validation, and
evaluation subsets.

6) GROUND TRUTH ACQUISITION
As one of the most important parts of WiFi fingerprint
dataset construction, ground truth label acquisition requires
significant attention, time and labour, especially for manually
collected datasets. It is observed in Table 2, 23 of the
included datasets indicated that ground truth labels were
obtained by manually measuring and recording coordinates.
Methods employed include using fixed tiles or grids on the
testbed floor, aligning with landmarks, and utilising markers
such as post-it notes. While manual collection requires the
least financial investment in ground truth collection devices,
it incurs substantial costs in terms of time and labour.
In contrast, 4 of the included datasets utilised robots for
their location ground truth acquisition. Specifically, a 3-wheel
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TABLE 2. (Continued.) Overview of existing publicly available WiFi fingerprint datasets.

robot equipped with IMU, LIDAR, sonar sensors and an
RGB-D camera was used in [68], a Turtlebot3 with LIDAR
and an RGBD camera was employed in [43] and [59], and
robot odometry was utilised in [69]. Other methods reported
in the literature include using the bMS3D mobile mapping
system with 6 DOF LIDAR SLAM [62], LIDAR [41], ORB-
SLAM3 [46], registering reference tags via video camera [70]
and using Leica TS06 Plus total station [57].

7) REPORTED POSITIONING PERFORMANCE
To provide a general understanding of the proposed WiFi
fingerprint datasets and establish baseline evaluation per-
formance for user reference, machine learning models are
commonly employed in the literature to generate positioning
estimates. Among the included WiFi fingerprint datasets,
several popular positioning models are predominantly used
as positioning algorithms. Note that some of datasets were
proposed as a supplementary material for novel position-
ing systems, thus the corresponding reported positioning
performance is extracted based on them.

The k-Nearest Neighbours (KNN) algorithm is a simple
yet widely used machine learning model for evaluating WiFi
fingerprint datasets, appearing in 26 out of the 52 included
datasets. KNN identifies the k closest training examples in the
feature space and bases its predictions on the majority label or
the average coordinates of these neighbours. The office room
dataset constructed by both ESP32 WiFi transmitters and
receivers achieved an accuracy of 2.60 m using KNN [50],

[60]. KNN was also applied to a vehicle indoor positioning
dataset, combing WiFi RSS, inertial measurement unit
(IMU), and odometry data, demonstrating an accuracy of
2.19 m [70], [71]. Baseline positioning errors of 0.781 m,
0.394 m, and 0.562 m were achieved by the KNN model
in a university building floor, an office room, and in an
apartment, respectively [6], [40]. A soft range limited KNN
(SRL-KNN) which incorporates a range factor related to the
physical distance between the user’s previous position and the
reference location in the dataset, demonstrated a positioning
accuracy of 0.66 m [51], [68]. 1NN, a more straightforward
version of the KNN algorithm, is also frequently used in
the literature. In [20], a comprehensive comparison of the
baseline performance of several public WiFi fingerprint
datasets was performed. The use of 1NN as a positioning
model was validated across various indoor scenarios, ranging
from a 2D 50 m x 20 m laboratory testbed [55], [72] to
3D datasets spanning more than seven university building
floors [73]. The baseline positioning performance of the
UjiIndoorLoc dataset, collected in a 108,703 square meters
testbed with 25 smartphones and tablets, was also reported
using 1NN with an accuracy of 7.9 meters [15], [47].

Neural network models, including artificial neural net-
work (ANN), convolutional neural network (CNN) and
Long Short-Term Memory (LSTM), have been adopted for
performance evaluation of public WiFi fingerprint datasets.
ANNs are initial forms of deep neural network (DNN),
consisting of few layers of interconnected nodes or neurons.
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TABLE 3. Links and notes of existing publicly available WiFi fingerprint dataset.

A comparative study was proposed in [58] to investigate
the range estimation performance of ANN on a WiFi RTT
dataset collected in a office floor [41]. The range estimation
achieved an accuracy of 4 m, 98 % of the time. CNNs
are specialized neural networks that employ convolution
operations in one or more of their layers to capture the
spatial and temporal dependencies in data with a grid-like
topology. In the context of WiFi fingerprint data, one-
dimensional convolutional neural networks (1D-CNNs) have
been employed. The CNNLoc method, which leverages
1D-CNNs, achieved a positioning accuracy of 7.60 m
on the 44,000-square-meters UTSIndoorLoc dataset [11].
In addition, 1D-CNNs were utilised to provide baseline
performance in the CSUIndoorLoc, a CSS-RSS fingerprint
dataset collected in a university building, demonstrating a
positioning error of 1.38 m [19]. Long Short-Term Memory
(LSTM) is a type of recurrent neural network (RNN)
architecture that is particularly designed for sequential data
learning, such as continuous WiFi fingerprints recorded
during trajectory walking. In the XJTLUIndoorLoc RSS
dataset, LSTM achieved a positioning accuracy of 0.62 m
in a building hall indoor environment [17]. Bidirectional
LSTM (BiLSTM) networks were proposed in [52] for evalu-
ating positioning performance on WiFi-BLE and RSS-RTT

datasets, achieving positioning accuracies of 0.82 m and
0.70 m, respectively.

V. PUBLIC WiFi FINGERPRINT DATASET GUIDELINE
This section outlines the limitations of current public WiFi
fingerprint datasets and proposes a standard for future open
access dataset publications.

A. LIMITATIONS
Despite the continuous publication and sharing of new
WiFi fingerprint datasets with the research community each
year, several prevalent issues in the dataset publication
have drawn our attention. Addressing these challenges in
existing publicly available WiFi datasets would greatly
enhance the open and collaborative environment in the
research community and accelerate the development of WiFi
fingerprinting-based indoor positioning systems.

Several limitations have been identified in the available
public WiFi fingerprint datasets. Firstly, there is a significant
shortage of RTT and CSI fingerprint datasets, with only
four and three public datasets use WiFi RTT and CSI
as signal inputs, respectively. More public datasets are
needed to fill this gap. In addition, key WiFi signal related
information such as LOS condition of the APs is rarely
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TABLE 3. (Continued.) Links and notes of existing publicly available WiFi fingerprint dataset.

reported in the literature. In terms of dataset publication,
the description sections are often insufficient, with some
fundamental elements only available in the related research
papers. However, it appears that these datasets typically
provide limited information about their features and often
lack details about the research papers in which they were
utilised. The disorgnised presentation of dataset features
poses a major challenge for researchers seeking to select the
most suitable dataset. To make matters worse, mismatches
have been identified among the dataset description pages,
related research papers, and their citations. As a result, the
authors have had to invest considerable effort in extracting
some critical dataset features in creating the comparison
table. Furthermore, many datasets become inaccessible 4 to
5 years after the publication of the related papers, likely due
to expired links.

For the datasets that were excluded, several major issues
were identified. Most of the excluded datasets either lack
a legitimate open access link or do not providing ade-
quate information and description of their features. These
shortcomings result in limited usability due to restricted
access and incomplete dataset elements. Next, some datasets
suffer from problems related to expiring links and lack

of maintenance. For instance, several datasets published
on https://crawd ad.org/ can no longer be found. And a
previous open-source indoor positioning systems and datasets
repository (http://lsr.cs.upb.ro/tool/1) also has faced similar
issue [12]. Moreover, datasets that are wrongly named or
tagged with ‘WiFi’ further complicate the selection of a
suitable WiFi fingerprint dataset.

B. INFLUENCE OF DATASET FEATURES ON THE REPORTED
PERFORMANCE
Before constructing of a WiFi fingerprint dataset, it is
essential to understand the key features that may influence
its performance. Although not all of the datasets reviewed
provide comprehensive details about their data collection
processes and general features, this review still offers
valuable insights into factors affecting dataset performance.

Intuitively, one might assume that deploying as many APs
as possible would create more unique fingerprints for each
location, leading to better accuracy. However, as shown in
Figure 9a, a higher number of APs does not necessarily
improve dataset performance. This is because, in a large-scale
testbed, most background APs are often undetected at a given
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TABLE 3. (Continued.) Links and notes of existing publicly available WiFi fingerprint dataset.

location, resulting in a fingerprint that primarily composed of
default or artificial WiFi readings.

Moreover, larger RPs number and wider interval between
them do not guarantee a stable dataset performance. A greater
number of more sparsely positioned RPs is expected to
produce more distinctive fingerprints. However, as illustrated
in Figure 9b and 9c, no clear correlation was found between
the configuration and arrangement of RPs, and the reported
dataset performance in the includedWiFi fingerprint datasets.
This could be because that the number and interval of RPs in
most existing datasets are constrained within a certain range
due to the efficiency in manual data collection.

Furthermore, the use of higher frequency in the collection
of WiFi signal measurements has minimal influence on the
final dataset performance, as shown in Figure 9d. A higher
sampling rate merely produce a greater number of similar
WiFi fingerprints within a fixed time period, which is
insufficient for capturing the fluctuating patterns of WiFi
signals. The temporal variations in WiFi signals can only
be effectively captured by recording each data sample at the
same RP over a longer time interval.

As shown in Figure 10, datasets intended for 3D posi-
tioning tend to exhibit more unstable performance. This is
because WiFi signal measurements do not vary significantly

in the vertical direction, especially in buildings where the
floor height is less than 4 metres, while the area spans
over 90 metres by 15 metres. For multi-storey buildings, the
dataset faces the similar challenges as those presented by a
large number of APs.

On the other hand, it is intuitive that a smaller testbed,
a larger number of data samples, and more informative
WiFi signal measures (e.g., CSI, RTT) contribute to greater
stability and improved dataset performance.

C. GUIDELINE FOR PUBLIC WiFi FINGERPRINT DATASET
PUBLICATION
To prevent similar issues in the future creating and sharing
public WiFi fingerprint datasets, we propose a detailed
step-by-step guideline to assist researchers in their dataset
publication efforts.

Firstly, after selecting the appropriate location type and
determining the real-world testbed for dataset collection,
researchers must conduct a thorough survey of the entire
testing area. This includes checking the interior and basic
structure of the selected building, assessing if there are
enough backgroundAPs, andmapping the entire area suitable
for WiFi fingerprinting tasks. Ideally, this should involve
providing a detailed floor map and the square footage of
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TABLE 3. (Continued.) Links and notes of existing publicly available WiFi fingerprint dataset.

the testbed. If the pre-installed APs do not deliver the
desired WiFi signal type, additional WiFi routers should be
positioned similarly to the existing APs.

Secondly, careful attention must be given to the division of
the RPs and the acquisition of ground truth labels. Whether
the dataset involves 3D indoor positioning, which includes
height information represented by floor IDs or Z-axis values,
or 2D mapping, accurate labeling of ground truth coordinates
is critically important. Simple tools such as measuring tapes,
post-it notes, and the existing tiles on the building floor can
greatly assist researchers who may have access to advanced
ground truth measuring methods. It is important to note that
trajectory tracking datasets may result in lower positioning

performance due to rapid movement and insufficient WiFi
measurements at each location.

Thirdly, the methodology for recording WiFi fingerprints
must be clearly defined. Researchers should begin by
selecting the devices for data collection, specifying their
orientation, and determining how the user will hold them. It is
crucial to decide which signal types will be collected, the fre-
quency of WiFi measurements, the number of measurements
required at each RP, and the duration of the entire collection
process. All these details must be meticulously documented
for future reference before starting data collection to ensure
consistency and reproducibility. Introduced in Section IV-A,
to indicate APs that are not heard from current RP, default
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FIGURE 9. The influence of various dataset features on the reported performance. The ‘trajectory’ value indicates that the dataset consists
solely of trajectory recordings.

FIGURE 10. The reported performance of 2D and 3D WiFi fingerprint
datasets.

artificial values should be utilised, as shown in Table 1.
Additionally, it is important to record the real-world position

of the (0,0) starting point in the testbed, the orientations
of the XYZ axes, the LOS conditions for each AP, and
environmental factors such as pedestrian traffic and the types
of rooms covered.

Finally, it is crucial to publish the WiFi fingerprint
dataset, along with comprehensive collection details, on a
reliable and open-access platform for future use by the
research community. Providing the detailed dataset collection
information discussed above in the dataset description is
essential for developing new positioning algorithms and
replicating existing results. Zenodo, used as the primary
publish platform for 30 out of 52, is highly recom-
mended for publishing open-access WiFi fingerprint dataset.
Zenodo is an open access and easy to use repository
developed by CERN (European Organization for Nuclear
Research) as part of the OpenAIRE project to support the
European Commission’s Open Data policy. With features
like versioning, GitHub integration, and usage statistics,
Zenodo ensures that the published datasets are citable,
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accessible, and trackable, promoting open science for
all [129].

VI. CONCLUSION
This paper provides a comprehensive and detailed review
of over 50 publicly available WiFi fingerprint datasets,
emphasizing their crucial role in the advancement of
indoor positioning systems. Through ourmeticulous analysis,
we underscore the challenges faced by researchers, including
the dispersed publication of datasets across various platforms,
inconsistencies in dataset organization and accessibility, and
the ineffective and biased selection of public WiFi fingerprint
datasets. Notably, all the datasets included in this review have
been manually tested to ensure that they have current and
accessible open access links.

This paper begins by defining the research scope and
methodology of this review. followed by a detailed intro-
duction to the background of WiFi fingerprinting and its
various signal inputs. We then conduct an in-depth analysis
of the open access WiFi fingerprint datasets, examining
critical elements from a researcher’s standpoint, including the
size and location of the testbed, 2D/3D indoor positioning
type, WiFi signal inputs, access points (APs), receiver
devices, the number of RP covered, the number of WiFi
fingerprint data samples, data collection interval (both
temporal and spatial), ground truth acquisition methods, and
reported positioning performance. The dataset features are
meticulously and extensively extracted and compared even
when they are not explicitly provided. Recent trends in these
factors and their impact on WiFi fingerprinting performance
are thoroughly discussed. Interestingly, we found that an
increased number of reference points and access points,
the use of 3D coordinates, larger RP intervals, and higher
WiFi collection frequencies do not necessarily lead to better
reported performance. However, a smaller testbed, a larger
number of data samples, and more informative WiFi signal
measures tend to contribute to more stable and accurate
dataset performance. Finally, we summarise the limitations
of existing WiFi fingerprint datasets, and propose standards
and guidelines for future open access WiFi fingerprinting
dataset publication, recommending Zenodo as the pre-
ferred platform. By addressing these challenges and setting
guidelines for future public dataset publication, we aim
to drive advancements in WiFi fingerprinting technologies,
thereby enhancing the performance of indoor positioning
systems.
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