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Abstract. Multimodal classification models, particularly those desig-
ned for fine-grained tasks, offer significant potential for various appli-
cations. However, their inability to effectively manage uncertainty often 
hinders their effectiveness. This limitation can lead to unreliable pre-
dictions and suboptimal decision-making in real-world scenarios. We 
propose integrating conformal prediction into multimodal classification 
models to address this challenge. Conformal prediction is a robust tech-
nique for quantifying uncertainty by generating sets of plausible clas-
sifications for unseen data. These sets are accompanied by guaranteed 
confidence levels, providing a transparent assessment of the model’s pre-
diction reliability. By integrating conformal prediction, our objective is 
to increase the reliability and trustworthiness of multimodal classifica-
tion models, thereby enabling more informed decision-making in contexts 
where uncertainty is a significant factor. 
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1 Introduction 

The key to adopting fine-grained classification models in real-world applications 
is their ability to handle uncertainty. These models need to be confident in their 
predictions and transparent about the uncertainty associated with each pre-
diction. This is where uncertainty quantification becomes crucial. It allows the 
models to generate probabilistic outputs, expressing the most likely prediction 
and the associated confidence level. To this end, we explore conformal predic-
tion, a technique for uncertainty quantification [ 1, 2]. Conformal prediction moves 
beyond point predictions. It generates sets of possible classifications for unseen 
data, guaranteeing the true class resides within the set with a predetermined 
confidence level. In low confidence scenarios, it might return an empty set, indi-
cating the model’s uncertainty [ 3, 4]. We evaluate our approach on the TAIMD-
17k multimodal dataset [ 8]. The primary contributions of this work include the 
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integration of Conformal Prediction into multimodal models, an evaluation of 
the TAIMD-17k dataset with our method, and a proposed approach to enhance 
the reliability and trustworthiness of multimodal classification models. 

2 Related Works 

In their study, [ 5] developed a multimodal neural network (MMNN) comprising 
distinct feature extraction and classification phases. They employed this net-
work to investigate a method for uncertainty estimation. To quantify model 
uncertainty, they incorporated dropout layers prior to each hidden layer within 
the feature extraction stages for every modality. As a result, when presented 
with an input (x) for model prediction, an ensemble of predictions is generated, 
and a probability distribution is constructed from the predicted probabilities. 
Ultimately, the standard deviation of this probability distribution is calculated 
to determine the model’s uncertainty. The dropout-based uncertainty estimation 
in the work described above uses the standard deviation of ensemble predictions 
from stochastic forward passes to gauge model uncertainty, offering a heuris-
tic measure without formal guarantees. In contrast, the conformal prediction 
approach constructs prediction sets or intervals with a user-specified coverage 
probability by calibrating against a separate dataset, providing statistically valid 
uncertainty quantification that accounts for both aleatoric and epistemic uncer-
tainty in a distribution-free manner. While dropout is integrated within the 
model architecture, conformal prediction is typically applied to the model’s out-
put, offering stronger guarantees at the cost of requiring calibration data. 

[ 6] and [ 7] emphasise the necessity of uncertainty quantification in multi-
modal models. Specifically, [ 6] proposed a healthcare decision system framework 
incorporating multimodal learning and uncertainty quantification. Similar to 
[ 5], their initial experiments employed Monte Carlo Dropout (MCD), dropout 
between network layers to produce a predictive distribution and calculate pre-
dictive entropy. However, this method suffers from the previously mentioned 
drawbacks associated with using dropout between layers, a limitation shared by 
both [ 6] and [ 7]. 

3 Methods 

[ 9] offer a comprehensive analysis of uncertainty quantification techniques in 
their work and outline the various approaches used to measure uncertainty in 
machine learning models. Recognising the diverse landscape they present, we 
sought an uncertainty quantification method well-suited to multimodal classifi-
cation. Inspired by prior research in this field, particularly the use of conformal 
prediction for quantifying uncertainty in unimodal models [ 10– 12], we opted to 
explore conformal prediction as a way to investigate the predictive confidence 
and certainty of our text and image-based multimodal model.
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3.1 Multimodal Model 

In this section, we utilise the Multimodal Bi-Transformers (MMBT) architecture 
initially proposed by [ 13]. Multimodal Bi-Transformers (MMBT) is a vision-
language model capable of learning a more encompassing relationship from a 
text and image multimodal dataset. MMBT combines pre-trained encoders for 
each modality (text and image) and then fine-tunes them jointly. The key idea 
is how it bridges the modalities: the image embedding is projected into the same 
space as the text tokens. To better understand this core component, Fig. 1, which  
visually dissects the MMBT architecture, offers valuable insights into how we 
adapted it for our specific application and its role in uncertainty quantifica-
tion. Following the framework of [ 13], which implemented ResNet for visual 
feature extraction, we instead integrated Clip as our visual encoder, while pre-
serving BERT for text encoding. The detailed multimodal configuration and 
hyper-parameters are provided in Table 1. 

Fig. 1. Multimodal bi-transformer architecture depicting the image and text projec-
tions. Our implementation modified MMBT and replaced ResNet with CLIP as the 
image encoder. 

3.2 Conformal Prediction 

Conformal prediction, or conformal inference, offers a compelling approach to 
uncertainty quantification within machine learning. Unlike traditional point pre-
dictions, conformal prediction generates statistically valid prediction sets, called 
calibration sets or conformity regions. These sets possess a crucial property –



Uncertainty Quantification of Multimodal Models 275

Table 1. Configuration and Hyperparameter for Multimodal model. 

Feature Value 
Epoch 50 
Optimiser MADGRAD 
Image encoder CLIP 
Image encoder size 288 
Number of image embeddings 4 
Text encoder BERT 
Token Sequence Length 120 
Loss function Cross Entropy 
Learning rate 2e-8 
Early stopping (patience) 5 

they are calibration-invariant. This implies that conformal prediction guarantees, 
with a user-defined confidence level (1 - α), that the true label will reside within 
the predicted set, regardless of the underlying data distribution or model com-
plexity. This feature is particularly advantageous for complex, non-parametric 
models like deep neural networks, where distributional assumptions may be chal-
lenging or misleading. Furthermore, conformal prediction avoids the need for 
specific loss functions typically employed in training, making it a flexible uncer-
tainty quantification tool readily applicable to pre-trained models [ 3,12,14]. 

Mathematically, we can denote the target variable as Y and the prediction 
set as I(x, α). Where x represents the features of the test data point and α is the 
significance level (α ∈ [0, 1]). The conformal predictor is considered valid when 
the condition expressed in 1 for all test data points (x) and significance levels 
(α) is true. 

P (Y ∈ I(x, α)) ≥ 1 − α (1) 

4 Experiments 

To quantify uncertainty in our multimodal model Sect. 3.1, we followed and 
modified the implementation detailed in the work of [ 3]. Their work focuses only 
on unimodal architectures, but we adapted and modified this implementation to 
work with multimodal based architectures. 

While [ 3] effectively demonstrated the implementation of conformal predic-
tion (CP) for unimodal regression and classification tasks, their approach pri-
marily focuses on handling unimodal datasets and pre-trained unimodal models. 
To address the inherent complexities of multimodal data, we present a modified 
conformal prediction implementation designed explicitly for multimodal-based 
architecture (detailed in Subsect. 3.1). This adaptation is necessary in our effort 
to explore how conformal prediction can be applied to quantify uncertainty in
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multimodal models. We conducted our experiments using the TAIMD-17k mul-
timodal dataset (publicly available at https://github.com/multimodal-research/ 
TAIMD-17k). This dataset comprises 17,000 paired image and text samples of 
ink cartridge items, characterised by fine-grained classification features. 

To initialise the conformal prediction framework for our experiments, we 
followed a multi-step process: 

1. Pre-trained Model Weight Loading: We leveraged the pre-trained weights of 
our multimodal model. This step is crucial because conformal prediction relies 
on a pre-trained model to establish a baseline for non-conformity scores during 
calibration. The calibration process involves analysing how well the model’s 
predictions align with the true labels within the calibration set. By leveraging 
a pre-trained model, we ensure the non-conformity scores effectively capture 
the model’s behaviour and inherent uncertainties. 

2. Calibration Set Generation: Recognising the crucial role of a well-calibrated 
dataset for valid conformal prediction guarantees, we meticulously con-
structed a calibration set. This set was derived from our existing evaluation 
split (eval split). The evaluation split typically represents a portion of the 
training data reserved for assessing model performance during the training 
process. 

3. ConformalModel Instantiation: We instantiated the Conf ormalM odel class, 
which serves as the core component for the conformal prediction framework. 
The instantiation process involved specifying several key parameters: 
(a) nn model: This argument references the pre-trained multimodal model 

mentioned above. The Conf ormalM odel class leverages this model to 
generate predictions for unseen data points during the conformal predic-
tion process. 

(b) eval dataloader: This parameter represents a data loader object specif-
ically designed for the evaluation split. Data loaders are crucial compo-
nents in PyTorch (or similar deep learning frameworks) for efficiently 
managing and delivering batches of data during training and evaluation. 
By providing the eval dataloader, we ensure the Conf ormalM odel has 
access to the data points from the calibration set for the calibration stage. 

(c) alpha: This parameter signifies the chosen significance level (α) for confor-
mal prediction. A significance level of 0.05 translates to a 95% confidence 
level, meaning the constructed prediction sets aim to guarantee, with 95% 
confidence, that the true labels will reside within the sets for unseen data 
points. 

(d) lambda criterion: This parameter specifies the selection criterion used 
during the construction of prediction sets. In this case, we opted for 
the ‘size’ criterion, which prioritises the selection of classes with non-
conformity scores less than or equal to the threshold, aiming for prediction 
sets with a minimum size while maintaining coverage guarantees.

https://github.com/multimodal-research/TAIMD-17k
https://github.com/multimodal-research/TAIMD-17k
https://github.com/multimodal-research/TAIMD-17k
https://github.com/multimodal-research/TAIMD-17k
https://github.com/multimodal-research/TAIMD-17k
https://github.com/multimodal-research/TAIMD-17k
https://github.com/multimodal-research/TAIMD-17k
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5 Result  

This section presents the experimental results of implementing conformal predic-
tion on the multimodal classification model. Our evaluation focuses on key per-
formance metrics: average coverage, expected calibration error, and conditional 
coverage. The average coverage measures the extent to which the prediction 
sets generated by conformal prediction contain the true class. A higher average 
coverage indicates that the model is generating more conservative predictions. 
Expected calibration error assesses the calibration of the prediction sets, eval-
uating how well the reported confidence levels align with the actual coverage. 
A lower expected calibration error signifies the accuracy of the model’s confi-
dence estimates. Conditional coverage is a more granular metric that examines 
coverage for different confidence levels, ensuring the model maintains consistent 
performance across varying degrees of uncertainty. 

Figures 2 and 3 illustrate the error rates for two different confidence lev-
els, 0.05 and 0.10, respectively. Additionally, Tables 2 and 3 provide a detailed 
breakdown of the performance of the model, including accuracy, uncertainty, 
emptiness, average prediction size, and overall error rate. These results offer 
insights into the effectiveness of conformal prediction in quantifying uncertainty 
and improving the reliability of the multimodal classification model. 

Fig. 2. The error rate for 95% confidence level, ε = 0.05  

6 Discussion 

In this section, we offer a comprehensive evaluation of the results. By focusing 
on key metrics, we assess the performance of the approach and its ability to pro-
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Table 2. Confidence level - 95%, ε = 0.05  

# Accuracy Uncertainty Emptiness Average Prediction Size Error rate 
1 1 100 0 30 0 
2 0.9226 100 0 28 0.0774 
3 0.8356 100 0 26 0.1644 
4 0.8482 100 0 27 0.1518 
5 0.7532 100 0 23 0.2468 
6 0.6892 100 0 20 0.3108 
7 0.7271 100 0 23 0.2729 
8 0.6887 100 0 22 0.3213 
9 0.5689 100 0 18 0.4311 
10 0.5130 100 0 15 0.4870 
11 0.5130 100 0 17 0.4870 
12 0.4870 100 0 16 0.5130 
13 0.4268 100 0 13 0.5732 
14 0.3343 100 0 10 0.6657 
15 0.2989 100 0 9 0.7011 
16 0.2443 100 0 7 0.7557 
17 0.1699 100 0 4 0.8301 
18 0.1509 100 0 5 0.8491 
19 0.0096 100 0 2 0.9024 
20 0.0382 17.16 0 1 0.9617 
21 0.0302 0 0 1 0.9697 

Table 3. Confidence level - 90%, ε = 0.1  

# Accuracy Uncertainty Emptiness Average Prediction Size Error rate 
1 0.9990 100 0 30 0.0010 
2 0.8370 100 0 27 0.1630 
3 0.7426 100 0 22 0.2574 
4 0.6358 100 0 19 0.3642 
5 0.6262 100 0 21 0.3738 
6 0.4865 100 0 15 0.5135 
7 0.3616 100 0 9 0.6384 
8 0.2960 100 0 9 0.7040 
9 0.1955 100 0 6 0.805 
10 0.8944 100 0 3 0.1056 
11 0.0302 100 0 1 0.9698
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Fig. 3. The error rate for 90% confidence level, ε = 0.1  

vide reliable uncertainty quantification. Some of the key findings are highlighted 
below. 

1. Consistent Coverage and Calibration: The conformal prediction method con-
sistently achieves the desired coverage levels across a range of significance 
levels, indicating its strong calibration properties. This is evident in the error 
rate plots and the tabular results, where the empirical error rates closely align 
with the specified significance levels. 

2. Trade-off Between Accuracy and Uncertainty: As expected, there is a trade-off 
between accuracy and uncertainty. The accuracy decreases as the significance 
level increases, but the uncertainty increases, reflecting a wider prediction 
interval. This behaviour is consistent with the fundamental principles of con-
formal prediction, which aims to provide guarantees on the coverage of the 
prediction intervals while maintaining a reasonable level of accuracy. 

3. Minimal Empty Intervals: The results demonstrate that the prediction inter-
vals are rarely empty, suggesting that the conformal prediction method can 
provide meaningful predictions even for challenging cases. 

4. Average Prediction Size: The average prediction size indicates the informa-
tiveness of the predictions. While the exact interpretation of this metric 
may depend on the specific application, it can help understand the trade-
off between accuracy and uncertainty. 

7 Implications and Future Directions 

This work highlights the effectiveness of conformal prediction in quantifying 
uncertainty in multimodal models, providing crucial prediction intervals for deci-
sion making. Future research should focus on improving the scalability and
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efficiency for large datasets, customising the method for specific applications, 
comparing it with Bayesian approaches, and further exploring its theoretical 
properties. The findings establish a foundation for future research and a broader 
application of conformal prediction in various multimodal domains. 

The results of this work carry substantial weight for the real-world use of 
conformal prediction with multimodal models. Delivering dependable prediction 
intervals with assured coverage is critical for applications demanding uncertainty 
quantification, like making choices when outcomes are uncertain. 
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