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Abstract

COVID-19 cough classification has rapidly become a promising research avenue as an acces-
sible and low-cost screening alternative, needing only a smartphone to collect and process
cough samples. However, audio processing of recordings collected in uncontrolled envi-
ronments and prediction confidence are key challenges that need to be addressed before
cough-screening could be widely accepted as a trusted testing method. Therefore, we pro-
pose a novel approach for cough event detection that identifies cough clusters instead of
individual coughs, significantly reducing onset detection’s usual hypersensitivity to energy
fluctuations between cough phases. By using this technique to improve training sample
quality and quantity by +200%, we improve Machine Learning performance on the mi-
nority COVID-19 class by up to 20%, achieving up to +47% precision and +15% recall
compared to the dataset baseline. We propose a novel, class-agnostic Conformal Prediction
non-conformity measure which takes the cough sample quality into account to counteract
the variance caused by limiting segmentation to just the training set. Our Conformal Pre-
diction model introduces uncertainty quantification to COVID-19 cough classification and
achieves an additional 34% improvement to precision and recall.

Keywords: COVID-19 cough classification, cough event detection, audio segmentation.

1. Introduction

The unanticipated spread of the COVID-19 pandemic has set off a hunt for accessible,
resource-light, and easy-to-distribute alternatives to standard medical tests. Audio classifi-
cation quickly emerged as a potential alternative compared to more personnel and resource
intensive tests (e.g., PCR, Lateral Flow Test), requiring only a smartphone to record respi-
ratory sounds while generating no plastic waste. In particular, cough classification achieved
promising results in detecting asymptomatic cases (Laguarta et al., 2020) and with forced
coughs (Brown et al., 2020).

However, a ubiquitous challenge in time-series classification including cough is how to
standardise the input with consistent dimensions for Machine Learning (ML). One of the
most sophisticated approaches identifies non-overlapping, isolated cough segments for max-
imum sample quality with successful prediction results (Mohammed et al., 2021; Andreu-
Perez et al., 2021). The difficulty lies in optimising the cough onset detection algorithm
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to identify the entire cough and avoid hypersensitivity to energy fluctuations within cough
phases (Cohen-McFarlane et al., 2020).

Additionally, COVID-19 cough classification suffers under the same limitations as most
ML predictive approaches: How certain are we that the model predictions are correct? To
answer this question, the Conformal Prediction (CP) framework quantifies the uncertainty
of the underlying ML model by statistically guaranteeing performance up to a user-selected
error rate (Shafer and Vovk, 2008). Contrary to ML, CP outputs prediction sets, which
means that optimisation is centred around reducing the set to 1 label, the most definitive
class association (Alvarsson et al., 2021).

Therefore, this paper aims to improve binary COVID-19 classification by proposing and
rigorously evaluating a novel cough cluster detection algorithm for audio segmentation, and
developing a novel CP non-conformity measure that takes sample quality into account.

1.1. Our contributions

e We improved COVID-19 classification precision and recall by up to +47% and +15%
compared to the published dataset baseline respectively, significantly narrowing the
class-performance differences (Section 4.4). The results were achieved with a novel
cough event detection approach which increases the quality and quantity of training
samples (+200%, Section 2.2).

e We demonstrated the valuable confidence and performance benefits that Conformal
Prediction provides for COVID-19 cough classification in a high-risk setting (+29%
precision and recall of forced predictions, Section 4.5).

e Finally, we developed a novel, class-agnostic non-conformity measure for Conformal
Prediction based on the sample quality (Section 3.2). By accounting for background
noise, we improved forced predictive efficiency by an additional 6% on average across
a range of metrics including precision and recall (Section 4.5).

2. Audio segmentation to isolate cough training samples

Sample quality is a ubiquitous Machine Learning challenge because noise can significantly
skew prediction performance by obscuring class-differentiating information (Gupta and
Gupta, 2019). In this paper, we use a COVID-19 cough dataset with volunteer-submitted
recordings (Brown et al., 2020). Consequently, the samples have a large variation in duration
(0.2-10 seconds), number of coughs per sample (1-15 individual coughs), and background
noise levels.

Thus, we propose a procedure that segments the training audio by isolating cough
intervals, which leads to a larger quantity of training samples and reduces sample variations
caused by uncontrolled recording environments.

2.1. Cough event detection

To segment a time-series in a non-overlapping manner, we need to identify the starting point
of events to isolate. The preferred automated approach are a class of algorithms called Onset
Detection, which locates extreme changes in an audio signal (Cohen-McFarlane et al., 2019).
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However, one of the difficulties in cough detection is identifying the event in its entirety
rather than its individual phases. As shown in Figure 1(a), there may be a second cough
energy peak that should not be split off (Cohen-McFarlane et al., 2020). In other cases,
a cough may consist of only the first two phases, meaning that every energy peak is an
individual cough (Figure 1(b)). To address the challenge of handling both 2-phase and
3-phase coughs correctly, we propose detecting cough clusters, i.e. a series of coughs with
only brief intervals between them. This ensures that samples are not split into too many
extremely short single-phase cough segments (<0.1s), while maintaining the removal of
extended non-cough intervals that would skew audio features.
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(a) 3-phase cough. (b) 2-phase cough.

Figure 1: Different inter-phase energy fluctuations make isolating individual coughs in their
entirety challenging. Since coughs may have varying phase configurations with
different durations, setting a minimum threshold before the next onset detection
performed poorly in our tests.

2.2. Proposed segmentation procedure

For cough onset detection, we chose Root Mean Square Energy (RMSE) as the underlying
feature as it may be interpreted as a signal’s loudness (Meister et al., 2021), an intuitive
indicator for a cough event with low to medium background noise levels. The audio feature
describes a signal’s energy as a function of its amplitude z over N frames.

RMSE = /L SN 22 (1)

Given RMSE, the Python audio-processing package librosa identifies any extreme
changes in the signal’s energy levels. To reduce the function’s hypersensitivity to different
cough phases and their energy fluctuations (Figure 1), we propose a novel onset filtering
technique that identifies cough clusters instead of attempting to find individual coughs.
Algorithm 1 gives a pseudo-code overview of the proposed onset filtering which produces
meaningful, non-overlapping audio segments.

In contrast to the common method of setting a minimum distance before the next
onset is detected (which performed poorly in our test because of the varying duration
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Algorithm 1: Cough onset detection and cough cluster filtering.

Input: sample,threshold
Output: onset_frames_filtered, the onsets of cough clusters
rmse_per_frame <— calculate_rmse(sample)
onset_frames < get_energy_onsets(rmse_per_frame)
onset_frames_filtered < list([onset_frames|0]])
for i <+ 1 to onset_frames.length do

if (onset_frames|i] — onset_frames[i — 1]) > threshold then

| onset_frames_filtered.append(onset_framesli])
end

end

of a cough), our novel approach successfully identifies cough clusters, and avoids over-
segmenting audio clips between cough phases. The novelty and improved performance was
achieved by the inclusion of a for-loop in Algorithm 1, which evaluates whether detected
coughs are the start of a cough cluster. By checking whether the current detected cough
(onset_frames[i]) is a minimum distance from the previous cough (onset_frames[i-1]),
we effectively filter only for coughs that are the first in a rapid series of coughs, i.e. a cough
cluster (onset_frames_filtered). The results are presented in Figure 2.
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Figure 2: The onsets detected by our proposed filtering method successfully identified mean-
ingful cough clusters. In comparison, standard onset detection was hypersensitive
to cough-phase energy fluctuations and noise, over-segmenting the audio.

The segmented audio samples were visually verified and manually spot-checked to ensure
the quality of the proposed method. An overview of the final statistics is presented in
Figure 3. Three cough clusters were identified in most original samples as expected, and the
number of individual coughs within a cluster ranged from 1-5. Assessing the distribution of
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sample durations, we see that the segmentation has drastically reduced the sample lengths,
with the majority just under 1 second.

Promisingly, this has also reduced a cough-external difference (i.e. silent sample record-
ing lengths) between COVID-19 and Healthy samples. Before segmentation, COVID-19
samples tended to have longer recordings while maintaining a similar number of cough clus-
ters. After isolation, the class duration distributions aligned almost perfectly. From these
results, we hypothesise an improvement in classification performance and a narrowing of
the performance gap between classes because cough isolation has reduced spurious back-
ground noise sample characteristics. A detailed results analysis in Section 4.4 confirms the
effectiveness of our segmentation method.
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Figure 3: Statistics of the cough clusters isolated by our proposed onset detection algorithm.
The number of isolated clusters varied but was centred on three as expected.
Promisingly, cough isolation removed the spurious association that COVID-19
samples have a longer duration with the same number of coughs.

3. A confidence measure for COVID-19 cough classification

The cough isolation pre-processing described above is limited to the training samples to
increase the size of the training set. Therefore, we propose a novel Conformal Prediction
non-conformity measure that takes the audio sample’s quality into account to address the
newly introduced differences between the training and test sets.

3.1. Inductive Conformal Prediction

Conformal Prediction (CP) is a Machine Learning framework based on hypothesis testing
that could be combined with any underlying algorithm to quantify the certainty of individ-
ual predictions. It has been used in high-risk settings such as pharmaceutical compound
prediction because it statistically guarantees a user-specified maximum error rate under the
minimal i.i.d. assumption (Alvarsson et al., 2021). This section gives a brief overview of
the concepts that are relevant for the paper, specifically focusing on the computationally
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efficient Inductive Conformal Prediction (ICP) variant for classification. Interested readers
may refer to Shafer and Vovk (2008) for a more detailed treatment of the framework and
its context.

ICP achieves a guaranteed error rate for a given significance level ¢ by outputting a
prediction set I''~¢ containing all plausible sample labels. The validity property ensures
that the following equation holds:

Pr(y; ¢, ) <e (2)

In other words, the ICP predictor makes a mistake (sample z;’s true label y; is not included
in the e-conditioned prediction set) with maximum probability up to €, subject to statistical
fluctuations (Shafer and Vovk, 2008).

An ICP predictor is defined by its non-conformity measure (NCM), which scores a
sample-label pair’s non-conformity a? compared to the known data. Each test sample z; is
extended to 2! = (z;,y) with every possible label in the label space y € Y, and evaluated
against the training proper set (z1, ..., z,). Given a calibration set (zp41, ..., 2, ) with NCM
scores (0‘%11’"-’0‘%) and a test sample z,,+1 with NCM scores Ozfnﬂ,y € Y, the test
sample’s class-conditional p-values p,,+1 are calculated with:

MG ol S ol
Pm+1(y) = G=n+1..,m:y}+1

3)

From the p-values, we generate an e-conditioned prediction set I''~¢ containing all probable
labels:

I = {y € YIpmi1(y) > €} (4)
A variant on ICP is the Mondrian Inductive Conformal Predictor (MICP) which extends
the validity guarantee to label-conditional maximum error rates, even in cases where there is

a large class performance gap in the underlying algorithm. This stricter validity is achieved
by adjusting the p-value calculation in Equation (3) to:

‘{j:n—i—l,...,m:y;:y,a? S%yn+1}‘+l
{G=n+1,...m:y =y} +1

Pm+1(y) = (5)

Because the error rates are guaranteed, ICP optimisation is centred on maximising
predictive efficiency, measured as a function of set size. Improvements are often achieved
by fine-tuning the NCM function (Alvarsson et al., 2021), which will be discussed in more
detail in the next section.

3.2. A class-agnostic Conformal Prediction non-conformity measure

Optimising a non-conformity measure (NCM) will significantly improve CP predictive effi-
ciency (i.e. set sizes). We chose Inverse Probability Function (IPF) as our baseline to build
on since it is a common and versatile NCM function that could be used in combination
with any probabilistic underlying algorithm. IPF is calculated as the inverse of a model’s
prediction on a sample z with the tentative class y;.

NCMIPF:1—P(yi‘JZ) (6)
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Improvement of the training set quality and quantity through cough cluster isolation
(Section 2.2) has introduced variation in the training and test set distribution. We min-
imised the effects with a carefully designed NCM that takes sample quality, i.e. background
noise, into account. Normalised NCM scores are regularly used to improve Conformal Pre-
diction (CP) efficiency (Wisniewski et al., 2020) but to the best of our knowledge, the
normalising factor is generally a Machine Learning model’s accuracy estimate of the test
sample. This implies that the normalising score will be affected by the same spurious class
associations that already decreases CP’s predictive performance (e.g., class imbalance).

Instead, we propose Signal-to-Noise Ratio (SNR) as a class-agnostic normalising factor
for NCM. SNR measures the average power of the background noise and the average power
of the foreground sound (Monge—Alvarez et al., 2019), in our case, coughs. Since the differ-
ence introduced between the training and test samples was a shifted cough vs non-cough
ratio, SNR provided a convenient metric for sample quality. SNR is often measured on a
logarithmic decibel scale because the signals tend to have a wide dynamic range.

The proposed SNR-based NCM is defined in Equation (7). The higher SNR is, the
closer the test sample is to the isolated training coughs, and the smaller the NCM will be,
i.e., the sample is conforming.

NCMipr
NCM = —
CMgsnNR SNERup (7)
SNRdB = 20'10g10 SNR (8)
. 2
SN — amplz‘tude signal )
amplitudengise

Figure 4 illustrates the distribution of SNR scores before and after cough isolation.
Looking at the original audio, the scores were concentrated near 0, because of a higher ratio
of non-cough intervals in the samples. In contrast, the curve became much shallower with a
wider range once the samples were segmented. The sample quality was much improved by
removing the majority of non-cough background information, and consequently audio fea-
tures were less skewed. Additionally, COVID-19 and Healthy scores overlapped much more
cleanly, confirming that cough isolation diminished the effects of spurious, class-obscuring
characteristics such as sample length, which in turn could improve prediction performance
(see Section 4.4).

4. Experimental results

This section empirically evaluates the proposed methods in the context of COVID-19 binary
cough classification.

4.1. Research questions

The overarching goal was to improve COVID-19 classification performance. We define three
research questions to focus our results analysis and discussion in the following sections:

e Does increasing the quality and quantity of training samples through cough event
detection and audio segmentation improve COVID-19 classification results?
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Figure 4: Signal-to-noise ratio (SNR) of the audio samples measures the ratio of cough to
noise intervals. The higher the score, the higher the quality of the sample. Cough
isolation successfully reduced non-cough, class-confounding effects.

e What valuable new insights does Conformal Prediction give us for COVID-19 cough
classification?

e Can we improve Conformal Prediction’s performance by quantifying the quality of a
particular sample and incorporating this information into the non-conformity mea-
sure?

4.2. Data and feature engineering

A curated version of the COVID-19 audio dataset described in Brown et al. (2020) was
used for the experiments because of its large sample count compared to other COVID-19
options. The dataset contains cough samples recorded by volunteers in April and May
2020 submitted through an Android app and a website, along with their COVID-19 status
(positive or negative). The dataset includes 487 cough samples, of which 29% are COVID-
19 positive and 71% are Healthy, i.e. COVID-negative and no other cough symptoms. Once
the samples were split into the train and test sets (2:1, stratified by label), we used our
proposed method for isolating cough events from Section 2.2 to increase the number of
training samples by almost 200% (see Table 1).

The original samples are encoded as WAV files at 22kHz with varying sample lengths
and around three cough clusters each. Before feature extraction, samples were standardised
by scaling the amplitudes to (—1,1), and trimming leading and trailing sections under
10dB to remove as much non-cough data as possible. Out of 15 widely-used audio features,
previous analysis of the dataset found MFCCs (Mel-frequency cepstral coefficients) to be the
most differentiating feature for COVID-19 cough classification, reaching 83.25% ROC-AUC
(Meister et al., 2021). MFCCs describe a signal’s power spectrum (Brown et al., 2020) and
may be interpreted as the audio’s tonal quality. Because MFCCs are calculated as a time
series, we took the mean to account for different audio lengths. To avoid overfitting models
on a small dataset, we identified MFCC_12 as the most impactful coefficient for both classes
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Table 1: COVID-19 cough sample counts and statistics. Samples were stratified and split
70:30% into the training and test sets. Cough segmentation (Section 2.2) increased
samples by almost 200%, but maintained the 2:1 imbalanced class ratio.

Dataset COVID-19 Healthy Total

Original 141 (20%) 346 (71%) 487 (100%)
Segmented 462 (32%) 986 (68%) 1448 (100%)

Increase 321 (185%) 640 (228%) 961 (197%)

by a wide margin through SHAP analysis, shown in Figure 5. SHAP (SHaply Additive
exPlanations) is a model agnostic alternative to the classic feature selection techniques
(Marcilio and Eler, 2020).

mrcc12_mean [
mrccz_mean [

P ———

MFCC19 mean _— = Healthy
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mean(|SHAP value|) (average impact on model output magnitude)

Figure 5: SHAP feature importance for feature selection. We chose MFCC12 because it
had the highest impact on both COVID-19 and Healthy classes.

4.3. Evaluation metrics

Standard Machine Learning (ML) and Conformal Prediction (CP) require unique metrics
to evaluate their performance because they output predictions in different formats. An
overview of the considered metrics is available in Table 2.

For ML, our focus lies on maximising accurate point predictions while taking the imbal-
anced dataset into account. Consequently, we focus on metrics such as accuracy, precision,
recall, and F1l-score. In addition, CP has a guaranteed level of error while outputting pre-
diction sets, which encourages measuring efficiency as a function of set sizes. Optimally,
each prediction set has exactly one element.
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Table 2: Evaluation metrics for Machine Learning (ML) and Conformal Prediction (CP).
T and F stand for True and False, P and N for Positive and Negative. n is the
number of test samples, I' the CP prediction set, and y; is sample i’s true label.

Metric Formula Intuition

Accuracy ACC = 7p +};£*$% TFN Correct predictions, both classes.
Precision PR = TpTiijP Correct COVID-19 predictions.

Recall REC = ﬁ COVID-19 samples correctly identified.
F1-score F1=2. % Accuracy taking imbalance into account.
Error rate Ot yréy)/n True label not in prediction set.

Empty rate >, T =0)/n Outlier samples.

Multi rate ok, Tl >1)/n Samples on the class boundary.

Single rate O, Tl =1)/n Efficient predictions.

True single rate (31, |Ti| =1Ayf € I;)/n  Correct efficient predictions.

4.4. Experiment 1: Training models with isolated coughs

In keeping with the research questions laid out in Section 4.1, we are particularly interested
in exploring to what extent training models on isolated coughs could improve COVID-19
cough classification performance. Therefore, we compared two scenarios:

e Scenario 1: Models were trained and tested on the original dataset. All samples were
full user-submitted recordings.

e Scenario 2: Models were trained on the segmented set and tested on the original set.
Train samples were isolated cough clusters as identified by our automated audio seg-
mentation procedure (Section 2.2). Test samples were full user-submitted recordings.

In both scenarios, we employed four ML algorithms to evaluate the model-agnostic
trends: K-Nearest Neighbours (KNN), Random Forest (RF), Support Vector Machine
(SVM), and Logistic Regression (LR). Each model was optimised with grid-search hyperpa-
rameter tuning, and all results were generated with 5-fold Stratified Cross Validation (CV)
to increase their stability. In Scenario 2, folds were assigned on the origin-level to ensure
that all isolated coughs from one submitted recording were contained in the same fold.

Scenario 1 results. Table 3(a) provides an overview of the ML results in Scenario 1,
with models reaching up to 70% accuracy on the original dataset. As expected from class
imbalance (2:1, Figure 1), COVID-19 samples were especially difficult to predict correctly.
Their accuracy was between -41% (RF) and -78% (SVM) lower than the Healthy-class
equivalent for all models, leading to low precision and recall (29% and 16% on average).

Scenario 2 results. The results summary in Table 3(b) shows only marginal overall ac-
curacy improvements up to 72% with the isolated training coughs, but it is well-established

10



COVID-19 COUGH CLASSIFICATION

Table 3: 5-fold CV test results to measure the benefit of training models on isolated cough
clusters (improved sample quality and quantity). Performance on the original
training set was poor for the minority COVID-19 samples. A segmented training
set significantly narrowed the performance gap between classes.

(a) Original cough training set. (b) Isolated cough training set.
Metric (%) KNN RF SVC LR KNN RF SVC LR
Acc [COVID] 26.78 31.93 3.81 13.77 36.96 39.11 24.88 26.65
Acc [Healthy] 77.71  73.05 81.85 82.42 77.55 73.80 82.17 82.42
Accuracy 65.92 61.41 69.62 70.84 66.95 63.46 71.26 71.67
F1 52.24 5249 42.83 48.10 57.25 56.45 53.53 54.53
Precision 35.62 32.74 5.71 4222 4091 38.41 52.86 57.00
Recall 22.07 31.26  2.86 8.52 34.09 40.44 17.02 17.76

that raw accuracy is biased with imbalanced data (Kotsiantis et al., 2006). Assessing better-
suited metrics like class-specific accuracy, precision, recall, and F1l-score, we see the true
effects of segmenting the training set: There was significant improvement in COVID-19
predictions across the board, with all four models. This is demonstrated more clearly in
Figure 6, where we plotted the difference in all metrics’ means between Scenarios 1 and 2.
Not only did we achieve significant improvement in terms of COVID-19 prediction perfor-
mance, we also confirmed that there was virtually no deterioration in the models’ accuracy
on Healthy samples.

SVM and LR achieved the largest improvements in Scenario 2 across most metrics,
e.g. +47% and +15% precision respectively. However, RF was identified as the best model
overall, since we considered good performance on COVID-19 samples as the deciding factor.
RF had both the highest COVID-19 accuracy (39%) and recall (40%) of all examined
models. Consequently, the Fl-score (56%) was also high, second by only < 1% (KNN).

4.5. Experiment 2: Conformal Prediction with a novel non-conformity
measure

After identifying the best combination of audio formatting (isolated training coughs and
full-recording test samples) and the underlying ML model (Random Forest) in Section 4.4,
we developed and assessed Conformal Prediction (CP) for COVID-19 cough classification.
A novel class-agnostic non-conformity measure (NCM) which takes the sample quality into
account further improved predictive performance by narrowing the gap between classes. As
explained in Section 3.2, we measured audio quality with the Signal-to-Noise Ratio (SNR),
which scores a sample’s cough vs non-cough proportions. Segmented training samples had
much higher SNR scores since they contain an isolated cough cluster. We used the SNR
score to normalise the well-known Inverse Probability Function (IPF-NCM), creating SNR-
NCM. The CP models were implemented in the nonconformist package.

11
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Figure 6: Effects of segmenting the training samples. There were significant improvements
across all COVID-19 related metrics, even though the dataset’s relative class
imbalance was unchanged (2:1). Importantly, minority class benefits did not come
at the cost of Healthy prediction performance, which stayed virtually unchanged.

The Inductive (ICP) and Mondrian Inductive (MICP) variants of Conformal Prediction
require three datasets: the training proper (45%), calibration (25%), and test sets (30%).
To ensure that the validity guarantee is maintained, the calibration and test sets have to be
i.i.d. and therefore both sets were comprised of original full-recording samples. Only samples
from the training proper set were run through the cough-isolation procedure proposed in
Section 2.2, which increased the number of training samples by 200% and ensured that all
coughs from the same original recording were contained in one subset.

Forced predictions. While prediction sets are usually the CP output of choice because
they guarantee maximum error rates, we may force point predictions (class with the highest
p-value) for a more direct equivalent to ML results. Comparing the performance of the
simple Random Forest (RF) algorithm with ICP results in Figure 7, it becomes immediately
clear that ICP is the superior COVID-19 cough classification model across a range of metrics,
most of which take the dataset’s 2:1 imbalance into account. ICP-IPF already improved on
RF significantly by 14% on average, and ICP-SNR added a further 2-8% across all metrics,
including class-specific accuracy. ICP-IPF/ICP-SNR particularly improved on precision
and recall (+29/34%), high-priority metrics in disease classification problems. The clear
performance improvements of the point predictions were very promising, but one of the main
draws of CP is that the prediction set approach allows for a more nuanced interpretation
of the predictions and quantify their uncertainty, which is what we will focus on in the
following paragraphs.

ICP results. Inspecting ICP’s prediction set results in Figure 8, we see that the overall
error rates were well-calibrated for both the IPF- and SNR-NCMs (non-conformity mea-
sures), subject to statistical fluctuations. While the class imbalance remained prominent

12
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Figure 7: ICP forced predictions compared against RF for COVID-19 classification. 1CP-
IPF significantly improved all metrics (COVID-19 and Healthy), especially high-
priority measures precision and recall up to 29%. ICP-SNR improved all metrics
by an additional 6% on average.
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(a) ICP-IPF test results. (b) ICP-SNR test results.

Figure 8: ICP test results showcase the benefit of normalising the NCM with Signal-to-
Noise Ratio (SNR). The class-discrepancy gap between COVID-19 and Healthy
was visibly narrowed by incorporating sample quality into the NCM, even though
training cough isolation had already significantly reduced non-cough class differ-
ences (Section 4.4).
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in both cases (COVID-19 error rate was higher and Healthy error rate lower than the
calibration line), normalising the NCM score with SNR significantly decreased COVID-19
error, narrowing the gap between the classes’ error curves. These observations confirm that
there were still noticeable non-cough class-discrepancies that could be addressed by incor-
porating sample quality into the NCM, even though training cough isolation had already
significantly reduced spurious feature skewing factors like the background segments between
coughs (Section 4.4).

Analysing more precise results in Table 4 for the 0.1-0.3 significance range, we observe
that IPC-SNR maintained the single-set rate overall. While the rate of multi-sets increased
with lower significance, this was offset by an increase in the COVID-19 true single set rate
(i.e. single sets containing the true label, optimal prediction) by 6% at the ¢ = 0.2,0.3
significance levels. On the other hand, the rate of empty sets stayed virtually unchanged,
from which we conclude that ICP-SNR successfully identified and penalised difficult samples.
In particular for the minority COVID-19 class, predictions tended to become multi-sets
rather than an erroneous single-set prediction.

Table 4: e-conditioned ICP results highlight the benefits of SNR normalisation on the mi-
nority COVID-19 class in particular. SNR successfully identified and penalised
difficult samples to improve ICP performance.

(a) ICP-IPF test results. (b) ICP-SNR test results.

Samples Rate (%) e¢=01 €=02 e=0.3 e=01 e=02 =03
All Error 11.32 21.38 30.19 6.92 19.5 30.82
Empty 0.00 0.00  12.58 0.00 0.00 13.84

Multi 34.59 6.29 0.00 58.49 5.03 0.00

Single 65.41 93.71 87.42 41.51 94.97 86.16

True single 54.09 72.33 69.81 34.59 75.47 69.18

COVID Error 38.3 59.57 76.60 23.40 53.19 70.21
Empty 0.00 0.00 23.40 0.00 0.00 23.40

Multi 55.32 10.64 0.00 76.60 10.64 0.00

Single 44.68  89.36  76.60 23.40  89.36  76.60

True single 6.38 29.79 23.40 0.00 36.17 29.79

MICP results. Turning our attention to the MICP results in Figure 9, we note that both
models were close to well-calibrated on a class-level, although COVID-19 samples still had a
noticeable disadvantage at low significance (e < 0.5). Somewhat surprisingly given MICP’s
label-conditional validity, ICP-SNR still improved on and once again visibly narrowed the
gap between the class error rates. One of MICPs inherent downsides is larger average set
sizes as a consequence of the stricter error guarantees. We see this implicitly in the much
more shallow and right-shifted single-rate curves in our results.

Even though the single rates tended to drop with MICP-SNR compared to MICP-IPF
at low significance, COVID-19 error rates tended to decrease by about 10% as well with an
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(a) MICP-IPF test results. (b) MICP-SNR test results.

Figure 9: MICP results confirm that normalising IPF with SNR still narrowed class perfor-
mance discrepancies, even with MCIP’s stricter label-conditional validity.

inverse increase in multi rates (Table 5). Interestingly though, the rate of true single sets
remained the same or slightly increased, which implies that the MICP-IPF single sets that
were changed to multi-sets by MICP-SNR were errors with the true class not included. We
infer that MICP-SNR successfully identified difficult, regularly misclassified samples and
increased their prediction set size to reduce errors, especially for the minority COVID-19
class. This confirms our ICP-SNR results, and underlines that incorporating sample quality
via SNR improved performance both overall and in particular for COVID-19 samples.

4.6. Summary of results

Overall, rigorous empirical evaluation of our proposed methods for COVID-19 cough clas-
sification showed a significant performance boost for both ML and CP, which narrowed the
performance gap between the 2:1 imbalanced classes.

Experimental results in Section 4.4 confirmed that training ML models on isolated cough
clusters (Scenario 2) showed significantly higher performance and improved model generali-
sation capacity for the COVID-19 class, while maintaining high performance on the majority
Healthy class. Performance gains from our segmentation procedure reached up to +47%
recall and +15% precision compared to the dataset baseline, with an overall accuracy of up
to 73%. The improvements could be traced back to an number of causes, including:

e Training sample quality improvement by removing inter-cough segments for better
model generalisation,

e Boosted training set numbers (200% increase), even though the relative ratio of classes
remains the same (2:1),
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Table 5: e-conditioned MICP results confirm previous observations that SNR normalisation
improves results overall and in particular for COVID-19 samples. Difficult samples
were penalised, increasing their set sizes to decrease error rates.

(a) MICP-IPF test results. (b) MICP-SNR test results.
Samples Rate (%) e¢=01 e=02 =03 e=01 €=02 e€=0.3
All Error 13.21 21.38 27.67 13.21 18.87 27.04
Empty 0.00 0.00 0.00 0.00 0.00 0.00
Multi 4717 2893  15.09 51.57  38.99  15.09
Single 52.83 71.07 84.91 48.43 61.01 84.91
True single 39.62 49.69 57.23 35.22 42.14 57.86
COVID Error 27.66 31.91 36.17 19.15 21.28 31.91
Empty 0.00 0.00 0.00 0.00 0.00 0.00
Multi 25.53 14.89 8.51 31.91 23.40 6.38
Single 74.47 85.11 92.49 68.09 76.60 93.62
True single 46.81 53.19 55.32 48.94 55.32 6.17

e And the removal of class differences encoded in the sample outside of coughs, e.g.
recording length and number of coughs.

The downside of training cough isolation is that we introduced variance in the sample distri-
bution between the train and test sets, which we addressed with a novel Conformal Predic-
tion (CP) non-conformity measure (NCM) normalised with Signal-to-Noise Ratio (SNR).
SNR describes the audio quality (cough vs non-cough ratio) and served as an estimate for
sample difficulty.

Both Inductive (ICP) and Mondrian Inductive Conformal Prediction (MICP) improved
classification performance drastically compared to the simple ML models with both the
Inverse Probability Function and SNR (IPF: +29%, SNR: +35% precision and recall with
forced predictions, Section 4.5). Prediction sets allowed a much more nuanced interpretation
of the results, which confirmed that ICP- and MICP-SNR both drastically reduced the class-
performance gap by penalising difficult samples, changing their predictions from (false)
single sets to multi-sets, limiting errors.

In summary, our results confirm that both training cough isolation and NCM scores
normalised by sample quality (cough vs non-cough ratio) significantly improved COVID-
19 classification performance by reducing the effects of confounding factors like sample
length and number of coughs. The best results were achieved when the two methods were
combined, especially for the COVID-19 minority class.

5. Related work

Computerised respiratory sound classification has a long history supported by the develop-
ment of sophisticated signal capture and processing technology. Compared to assessing lung
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sounds manually, automated analysis and prediction techniques introduce less subjectivity
(Rizal et al., 2015). Since the onset of the COVID-19 pandemic in 2019, many parties have
collected and published COVID-19 audio datasets containing a range of respiratory signals
such as breath, cough, and speech recordings (Brown et al., 2020; Sharma et al., 2020;
Schuller et al., 2021). The intuition to gather a variety of lung sounds could be drawn back
to COVID-19 as a disease that physically affects the lungs, and therefore causes distinct tur-
bulence in all air flows, even in asymptomatic cases (Laguarta et al., 2020). The relevance of
COVID-19 respiratory classification is underlined by the 2021 prestigious INTERSPEECH
challenge to identify COVID-19 infection from cough and breath samples (Deshpande and
Schuller, 2021).

Because coughing is an extremely common symptom for many diseases, a rich liter-
ature is available for the classification of non-COVID respiratory diseases. Knowledge
transfer through Transfer Learning has been very promising for COVID-19 classification
(Pahar et al., 2022), especially because it mitigates the lack of large, high-quality COVID-
19 datasets. Additionally, adjusting non-respiratory disease classification research focused
on identifying early Alzheimer’s from speech has also proven successful (Laguarta et al.,
2020).

One of the primary challenges of respiratory classification with Machine Learning (ML)
is how to approach the varying length of time-series samples. There are multiple ways to au-
tomatically standardise the sample lengths, for example by trimming/padding samples, al-
though this could add uninformative data or even remove important segments (Mohammed
et al., 2021). In comparison, using a sliding window to create overlapping segments retains
all of the information, but could create uninformative chunks containing only partial infor-
mation if the parameters are set incorrectly (Andreu-Perez et al., 2021). Finally, the most
sophisticated but also most challenging approach is to identify informative, non-overlapping
segments that each contain one audio event, e.g. a single cough (Mohammed et al., 2021;
Andreu-Perez et al., 2021). To avoid hyper-segmentation of the audio, the respiratory onset
detection algorithm has to account for energy fluctuations in the respiratory signals, e.g.
different phases in a cough (Cohen-McFarlane et al., 2020).

As in other high-risk settings, the uptake of ML COVID-19 screening techniques could
benefit from integrated uncertainty quantification. Conformal Prediction (CP) is a confi-
dence framework rooted in hypothesis testing which provides guaranteed performance for
each individual prediction (Shafer and Vovk, 2008). CP for respiratory classification has
shown success in identifying cough events in audio recordings (Nguyen and Luo, 2018; Meis-
ter, 2020). While CP has been used to forecast daily COVID-19 infections (Stankeviciute
et al., 2021), to the best of our knowledge, it has not been used to predict COVID-19
infection from cough samples.

6. Conclusion and future directions

We have proposed and shown the effectiveness of three methods to improve COVID-19
cough classification, reduce the performance gap between the heavily imbalanced classes,
and automatically incorporate uncertainty quantification. A new approach to segmenting
training samples into cough clusters improved sample quality and quantity by 200%. In
combination with a novel, class-agnostic Conformal Prediction confidence measure that
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takes the sample quality into account, we have achieved +35% precision and recall compared
to standard Machine Learning.

Our proposed methods are versatile because they are not restricted to the COVID-19
classification problem. Future works could extended our proposals to any audio cough clas-
sification task, optionally with a more problem-specific sample quality measure. One of the
paper’s limitations is the relatively small dataset size, but cross-validation and experimen-
tation with multiple ML models show stable results.

Future directions of interest include an examination of how background noise within a
cough interval might be addressed with a more sophisticated sample quality measure, and
evaluating how the choice of audio features alters the effectiveness of the Signal-to-Noise
ratio quality measure.
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